نام پژوهشگر: اصغر نگارستانی
اصغر نگارستانی محمد حسین ابوالبشری
با توسعه و پیشرفت روز افزون روشهای ماشینکاری، کاربرد روشهای بهینهسازی در فرآیندهای ماشینکاری فلزات برای بالا بردن کیفیت قطعات و رقابت در بازار ضروری و سودمند به نظر می رسد. یکی از پارامترهای مهم کیفیت قطعه ماشینکاری شده زبری سطح آن قطعه می باشد. هرچه زبری سطح قطعه کمتر باشد کیفیت سطح آن بالاتر است. در این پژوهش به مطالعه بهینه سازی پارامترهای ورودی فرآیند فرزکاری انگشتی برای رسیدن به زبری سطح مینیمم پرداخته شده است. 5 پارامتر از فرآیند فرزکاری برای مینیمم کردن زبری سطح مورد بررسی قرار گرفته است. بدین منظور، با انجام یک سری آزمایش طرح ریزی شده با تکنیک طراحی آزمایشات یک سری داده های ورودی و خروجی به دست آمده و از روش شبکه های عصبی مصنوعی برای مدلسازی فرآیند به کار رفته است. با روش آزمون خطا، معماری 1-6-8-5 به عنوان بهترین معماری برای شبکه عصبی مصنوعی که کمترین خطا را داشت انتخاب شده است. مدل شبکه عصبی مصنوعی ایجاد شده به عنوان تابع هدف الگوریتم ژنتیک به کار رفته است. الگوریتم ژنتیک با بهینه کردن مقادیر پارامترهای ورودی زبری سطح را تا 0.85 میکرومتر کاهش داده است. عملیات بهینه سازی برای سه استراتژی مسیر ابزار به صورت جداگانه اجرا شده و استراتژی چرخشی کمترین زبری را نتیجه داده است. در انتها با استفاده از روش پیش بینی تاگوچی سطوحی که دارای بیشترین نسبت سیگنال به نویز هستند به عنوان سطوح بهینه معرفی شده اند که کمترین زبری سطح را نتیجه می دهند.