نام پژوهشگر: هوشنگ افشین

زیر فضاهای پایای عملگر انتقال گایگر
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم پایه 1391
  هوشنگ افشین   محمد تقی حیدری

فرض کنید h^2 فضای هاردی باشد. عملگر ضربی(انتقال به جلو) m_(z(f)=zf(z)) تعریف می شود با توجه به قضیه بورلینگ: aیک زیر فضای بسته ی پایای m_z است اگر و تنها اگرh^2 a=?؛ که ? یک تابع داخلی است. اگرu یک گوی واحد، p?uو u) ? z) (z): =(p-z)/(1-p ?z) ?_p برای هر عدد صحیح نامنفی n، فرض کنید ??_p (z))?^n ) (z)= ?((1-?|p|?^2)/(1-p ?z)) b_n b_n ها پایه برای فضای هاردی h^2 می باشد که به پایه گایکر معروف است. عملگر انتقال نسبت به پایه گایکر را به صورت زیر تعریف می کنیم: (m_(?_p )f)(z) =?_p (z)f(z) در این پایان نامه به اثبات این قضیه می پردازیم که: a یک زیر فضای عملگر انتقال گایکر m_(?_p ) (z) است اگر و تنها اگرh^2 a = ?، که ? یک تابع داخلی است. 1-فصل اول این پایان نامه شامل تعاریف اولیه و قضایایای مورد نیاز در فصول بعدی 2-فصل دوم این پایان نامه در مورد فضای هاردی مفاهیم و قضایای مورد نیاز این مبحث 3-فصل سوم قضیه بورلینگ و تامیم آن روی فضای گایگر