نام پژوهشگر: حمیده عدالتی

عملگر های m - طولپا روی فضا های باناخ
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم 1390
  حمیده عدالتی   عبدالکریم هدایتیان

در این پایان نامه مقالات " عملگر های m - طول پا روی فضا های باناخ" از احمد محمود و نیز" عملگر های 2- طول پا " از اس. ام. پاتل بررسی می شوند. در حقیقت، کلاس عملگـر های m - طول پا روی فضـا های بانـاخ معرفی می شـود و سپس چندین مثـال از این عملگر ها مورد بررسی قـرار می گیرد. هم چنین نشان داده می شود که این عملگر ها از پایین کران دارند، به علاوه کران پایینی برای آن ها می یابیم و سپس برخی ویژگـی های جبـری این کلاس از عملگر ها مورد بررسی قرار می گیرد. هم چنین عملگر هایm - وارون پذیر معرفی شده و نشان داده می شود که هر عملگر m – طـول پا روی یک فضای هیلبرتm - وارون پذیر چپ است. در ادامه ثابت می شود که طیف نقطه ای تقریبی یک عملگـرm - طول پا زیر مجموعـه ای از دایره ی یکـه است، بعلاوه شعاع طیفی این عملگـر ها 1 می باشد. در انتها نیز به طور خاص عملگر های 2- طول پا روی فضـا های هیلـبرت و بعضی ویژگی های آن ها بررسی می شوند.