نام پژوهشگر: عبدالجلیل عاده
عبدالجلیل عاده زهرا رحمانی
کنترل و نظارت بر فرایند تولید از اقدامات اولیه برای تولید کالاهایی با کیفیت بالا بوده و در صنعت از اهمیت ویژه ای برخوردار است. در سال های اخیر از الگوهای جدول کنترل بطور گسترده برای حل مشکلات موجود در فرایند تولید استفاده شده است، بطوریکه غیر از الگوی نرمال، هر یک از الگوها بیانگر مشکل خاصی در فرایند تولید می باشند. در این پایان نامه سه روش برای شناخت دقیق و اتوماتیک الگوهای جدول کنترل ارائه شده است. روش اول از سه بخش اصلی تشکیل شده است: بخش استخراج ویژگی، بخش جداساز و بخش بهینه ساز. در بخش استخراج ویژگی، ضرایب تبدیل موجک به عنوان مشخصه موثر برای ارائه الگوها پیشنهاد شده است. در بخش جداساز، شبکه های عصبی مبتنی برتوابع شعاعی بررسی شده است. در شبکه های عصبی مبتنی برتوابع شعاعی، تعداد توابع شعاعی، مراکز توابع شعاعی و پراکندگی آنها تاثیر بالایی بر عملکرد شبکه دارند. به همین دلیل در بخش بهینه ساز، از الگوریتم زنبور بهبود یافته برای تعیین مقادیر بهینه آنها استفاده شده است. الگوریتم زنبور بهبود یافته برای اولین بار در این پایان نامه معرفی شده است. روش دوم از دو بخش خوشه بندی و جداساز تشکیل شده است. در بخش خوشه بندی، ابتدا یک دسته بندی اولیه بدون ناظر توسط الگوریتم خوشه بندی صورت می گیرد و داده ها در خوشه های معین قرار می گیرند. فاصله اقلیدسی داده ها از مراکز خوشه ها حساب شده و به عنوان ورودی موثر جداساز در نظر گرفته می شوند. سپس تفکیک نهایی توسط جداساز انجام می شود. در قسمت جداساز، شبکه های عصبی پرسپترون چندلایه با الگوریتم های یادگیری مختلف بررسی شده است. روش سوم از دو سطح اصلی تصمیم گیری تشکیل شده است و عمل تفکیک الگوها در دو مرحله صورت می گیرد. در سطح اول تصمیم گیری، ابتدا با استفاده از ویژگی آماری مناسب به عنوان ورودی جداساز، الگوها به سه گروه دو تایی تقسیم می شوند. سپس در سطح دوم تصمیم گیری، در هر یک از گروه ها، با استفاده از ویژگی شکلی مناسب به عنوان ورودی جداساز، تشخیص نهایی صورت می گیرد. یکی از ویژگی های شکلی برای اولین بار در این پایان نامه معرفی شده است. در این روش از شبکه های عصبی مبتنی برتوابع شعاعی به عنوان جداساز استفاده شده است و ساختار آن توسط الگوریتم زنبور بهبود یافته بهینه شده است.