نام پژوهشگر: سمانه پیرعلی

حل عددی معادله اغتشاشی مسیر حرکت ماهواره
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده علوم پایه 1390
  سمانه پیرعلی   سید حجت اله مومنی ماسوله

در این پایان نامه به حل عددی معادله اغتشاشی مسیر حرکت ماهواره (مسئله دو جسم‎ اغتشاشی‎)، که یک دستگاه معادلات دیفرانسیل مرتبه دوم با مقدار اولیه می باشد با استفاده از روش تعمیمی جدید بدون مش که بر پایه شبکه های عصبی مصنوعی، تکنیک های مینیمم سازی و روش های هم محلی است؛ پرداخته شده است. ‎اغتشاشی که در این مسئله لحاظ شده اغتشاشات گرانش زمین است. این مسئله با روش های عددی مختلفی از جمله انواع رونگه-کوتا، رونگه-کوتا-نیستروم، رونگه-کوتا-فلبرگ، اویلر، هیون، آدامز-بشفورث و آدامز-مولتون حل شده است؛ نتایج نشان می دهد که در این بین روش رونگه-کوتا-فلبرگ?? بهترین دقت را دارا است. در روش پیشنهادی ابتدا یک جواب تقریبی از شبکه عصبی مصنوعی شامل پارامترهای قابل تنظیم برای معادله دیفرانسیل تعریف می شود. با استفاده از فرایند یادگیری شبکه های عصبی مصنوعی مقادیر بهینه برای پارامترهای قابل تنظیم بدست می آیند. در نهایت با جایگذاری مقادیر بهینه پارامترها در جواب تقریبی، جواب آزمایشی حاصل می شود. در شبکه عصبی مصنوعی از پرسپترون سه لایه با یک لایه ورودی، یک لایه پنهان دارای تابع تحریک لوژستیک، یک لایه خروجی دارای تابع تحریک همانی و یک نرون در لایه پنهان استفاده شده است. از تابع کتابخانه ای ‎‎‎‎‎‎‎nlpsolve‎‎ موجود در بسته‎ نرم افزاری maple?? برای مینیمم سازی مورد نیاز در فرایند یادگیری شبکه عصبی مصنوعی به منظور یافتن جواب بهینه استفاده شده است. ماکسیمم خطای نقط‎ه‎ ای در کل بازه حداکثر ‎‎‎‎‎‎10^{-‎‎20}‎ ‎‎‎‎‎ بود. بنابراین ماکسیمم خطای نتایج، برای یک دوره مداری، در مقایسه با رونگه-کوتا-فلبرگ??، ‎ ‎‎127 ‎‎متر بود که نشان می دهد روش پیشنهادی به دقت روش رونگه-کوتا-فلبرگ?? است. ‎‎‎ بر اساس اطلاعات موجود، نزدیک ترین جواب عددی در دسترس به جواب آزمایشگاهی‎‎، جواب رونگه-کوتا-فلبرگ?? است.