نام پژوهشگر: شیدا مرادی
شیدا مرادی محمد رضا زادکرمی
داده های گمشده یک مسئله رایج در تحلیل مطالعات طولی است. آزمودنی های حاضر در مطالعه ممکن است در همه نقاط زمانی در دسترس نباشند و یا این که مطالعه را قبل از پایان آن ترک کنند. داده های گمشده غیرقابل چشم پوشی اغلب در مطالعات طولی همراه با اندازه گیری های تکراری رخ می دهند. در چنین شرایطی باید یک مدل توأم برای پاسخ ها و مکانیسم داده های گمشده تعیین گردد. داده های طولی نیازمند روش های آماری خاصی هستند، زیرا مجموعه مشاهدات روی یک آزمودنی همبسته اند و برای به دست آوردن استنباط های معتبر آماری باید این همبستگی ها را در محاسبات اعمال کرد. مدل اثرات تصادفی یکی از روش های تحلیل داده های طولی است که در آن، همبستگی میان مشاهدات مکرر به وسیله اثرات تصادفی در نظر گرفته می شود. معمولا فرض بر این است که اثرات تصادفی از یک توزیع نرمال پیروی می کنند. اما فرضیه نرمال بودن اثرات تصادفی لزوما در عمل مناسب نیست. یک کلاس گسترده تر که توزیع نرمال را به صورت یک حالت خاص در بر می گیرد، توزیع چوله نرمال می باشد. این توزیع دارای یک پارامتر تنظیم چولگی است که اگر این پارامتر برابر با صفر قرار داده شود، توزیع نرمال به دست می آید. در این پایان نامه، مدل بندی داده های دودویی طولی همراه با انصراف غیرقابل چشم پوشی از طریق مدل های اثرات تصادفی مورد بررسی قرار می گیرد. به دست آوردن برآورد پارامترها از تابع درستنمایی حاشیه ای نیازمند انتگرال گیری های پیچیده است. برای حل این مسئله، تقریب مونت کارلو از طریق نمونه گیری گیبز به کار می رود. خروجی های نمونه گیری گیبز را می توان با استفاده از نرم افزار بیزی winbugs و با اتخاذ پیشین های ناآگاهی بخش برای پارامترها به دست آورد. هدف اصلی در این پایان نامه، بررسی توزیع اثر تصادفی در مدل اثرات تصادفی می باشد. در این راستا، توزیع چوله نرمال را به عنوان توزیع اثرات تصادفی مورد مطالعه قرار داده ایم. برازش مدل اثرات تصادفی همراه با اثرات تصادفی نرمال و چوله نرمال برای داده های بالینی متادون با استفاده از نرم افزار winbugs انجام گرفته است. نتایج برازش مدل اثر تصادفی چوله نرمال برای دو انتخاب متفاوت توزیع پیشین مربوط به پارامتر چولگی ارائه و بررسی می شود.