نام پژوهشگر: محمدشهاب شهوازیان
محمدشهاب شهوازیان وحید ابوطالبی
با توجه به اهمیت روزافزون امنیت اطلاعات و نیاز افراد و سازمانها به امنیت بیشتر به خصوص در فناوری های ارتباطاتی و اطلاعاتی، ابزارهای قدیمی مانند رمز عبور به تنهایی جوابگو و قابل اعتماد نمی باشند. با ظهور دانش بیومتریک روش های متداول تأیید هویت در سیستم های بیومتریک دچار دگرگونی شده و در حال جایگزینی با روش هایی بر پایه ی علایم حیاتی می باشند. اخیراً کاربرد سیگنال الکتریکی مغز(eeg) در سیستم های بیومتریک به عنوان یک شاخه پژوهشی جذاب و کاربردی مورد توجه محققین قرار گرفته است. در این پژوهش با در نظر گرفتن بیومتریک سیگنال الکتریکی مغز، مجموعه ای از روش های مختلف استخراج، انتخاب ویژگی و همچنین طبقه بندی کننده های متفاوت در قالب یک سیستم بیومتریک تأیید هویت بررسی می شود. در سیستم بیومتریک معرفی شده ی نهایی از سیگنال الکتریکی بیست کاربر در حین انجام فعالیت ذهنی استفاده شده است. ترکیبی از ضرایب مدل خود بازگشتی(ar) ، توان باندهای فرکانسی سیگنال مغز، چگالی طیف توان، آنتروپی انرژی و آنتروپی نمونه به عنوان ویژگی های مستخرج از سیگنال مغز و k نزدیک ترین همسایه و مدل مخلوط گوسی به عنوان طبقه بندی کننده، مورد استفاده قرار گرفته است. به منظور بهبود عملکرد سیستم تأیید هویت، علاوه بر بررسی ادغام در سطح حسگر و فضای ویژگی، امکان به کارگیری روش های انتخاب ویژگی به کمک الگوریتم ژنتیک نیز مورد مطالعه قرار گرفته است. نتایج آزمایش های ما بر روی پایگاه داده shalk و همکارانش بیانگر این موضوع است که با ترکیب ویژگی های متفاوت و استفاده از الگوریتم ژنتیک با به کارگیری سیگنال مغزی تک کاناله، عملکرد سیستم در دو روش تک بلوک و چند بلوک نسبت به سایر سیستم های تأیید هویت مبتنی بر سیگنال الکتریکی مغز به نحو چشمگیری بهبود می یابد و چشم انداز روشنی از استفاده ی عملی و تجاری سیگنال الکتریکی مغز در سیستم های تأیید هویت آینده را نشان می دهد.