نام پژوهشگر: فاطمه نیک بخت
فاطمه نیک بخت امیرعباس ایزدپناه
معادلات حالت در علوم مهندسی برای پیش بینی خصوصیات ترمودینامیکی سیالات استفاده می شود. معادلات حالت درجه سه در محاسبات تعادل های فازی و تخمین خصوصیات فیزیکی سیالات بویژ ه در صنعت نفت کاربرد فراوان دارند ]1[. آزمایش و تجربه نشان می دهد که دو معادله حالت معروف srk ]2[ و pr ]3[ که در دهه 70 میلادی برای کاربردهای ساده به خصوص در مخلوط های هیدروکربنی ارائه شد، قادر به بیان خواص ترموفیزیکی و تعادلات فازی سیالات تجمعی نبود. سیالاتی که قادر به ایجاد پیوند هیدروژ نی می باشند را سیالات تجمعی گویند. معادلات حالت درجه سه در ابتدا برای ذرات خالص و مجزا از هم (بدون پیوند) استفاده می شد. در این معادلات تنها دو نیروی جاذبه و دافعه بین مولکولی در نظر گرفته می شود. کنار هم قرار گرفتن برخی از مولکول ها و ایجاد یک ترکیب جدید با نیروی پیوندی قوی غیرقابل اغماض باعث شد که استفاده از این معادلات بدون در نظر گرفتن نیروی جدید پیوندی دچار مشکل شود. پس ایجاد معادلات جدیدی که بتواند این پیوند شیمیایی قوی را در محاسبات در نظر بگیرد ضروری می نمود. آب همراه در مخازن نفتی با ایجاد پیوند هیدروژ نی با هیدروکربن های موجود در مخزن شرایط غیرایده آلی در سیستم آب و نفت حاکم می کند. در چنین سیستمی استفاده از معادلات حالت درجه 3 خطای زیادی در محاسبات ایجاد می??کند. در واقع وجود پیوند هیدروژنی باعث ایجاد رفتارهای غیر عادی در خصوصیات ترمودینامیکی سیالات جدید می گردد. آب در دما و فشار پایین به صورت یک فاز بی اثر عمل می کند ولی در دما و فشار بالا می تواند با انحلال سیالات مخزن خواص متفاوتی ایجاد کند. ترکیبات دیگری مانند متانول و گلایکول که جهت جلوگیری از تشکیل هیدرات های گازی به سیالات مخزن اضافه می شوند نیز می توانند همین مشکل را ایجاد کنند. افزودن این مواد به عنوان بازدارنده های تشکیل هیدرات باعث ایجاد یک سیستم پیچیده از هیدروکربن، آب و متانول یا گلایکول می شود که توضیح این حالت به وسیله معادلات حالت درجه 3 بسیار مشکل می باشد ]1[. هیدرات-های گازی ترکیباتی یخ مانند از آب و گاز هستند که معمولاً در فشارهای بالا و دماهای پائین تشکیل می شوند به گونه ای که در هر واحد سازنده آنها یک مولکول گاز در قفسی از مولکول های آب محصور شده است ]4[. هیدرات گازی در سال 1934 توسط همراشمیت به عنوان یکی از معضلات صنعت گاز در خطوط لوله انتقال معرفی شد. هیدرات با کاهش سطح مقطع داخلی لوله باعث افزایش افت فشار شده و در بعضی موارد ممکن است به انسداد کامل لوله منتهی شود]5[. تشکیل هیدرات هم چنین می تواند به تخریب ابزارهای موجود در فرآیند از جمله شیرها و حس گرها بیانجامد ]6[. برای بیان مشکل سیستم پیچیده بالا و سیستم هایی از این قبیل که شامل ترکیبات تجمعی بودند نیاز به انجام تصحیحات تجربی یا نیمه تجربی بر روی معادلات حالت درجه سه جهت در نظر گرفتن حالت اتحادساز ضروری می نمود. برای سیالات تجمعی معادلات حالت بسیاری پیشنهاد شد بررسی ها نشان داد یکی از این معادلات که نتایج رضایت بخشی حاصل کرد معادله حالت cpa است. در این معادله نیروی جاذبه قوی وابسته به مولکول های تجمعی درنظر گرفته می شود. این نیروهای جاذبه روی خصوصیات سیال و رفتارهای فازی تعادلات مایع-مایع و گاز-مایع تأثیر می گذارد ]7[. معادله مزبور شامل معادله حالت srk جهت بیان بخش فیزیکی اثر متقابل در مولکول های سیال و ترم تجمعی wertheim جهت بیان خصوصیات شیمیایی ناشی از پیوند هیدروژ نی می باشد. این معادله شامل پنج پارامتر قابل تنظیم بوده که از میان آنها 3 پارامتر از متغییرهای ذاتی معادله حالت srk می باشد و دو پارامتر دیگر مربوط به اثرات تجمعی است. پارامترهای ذکر شده با برازش هم زمان فشار بخار و دانسیته های مایع اشباع سیالات تجمعی در حالت خالص به دست می آیند]8[. توانایی مدل مزبور برای پیش بینی انواع مختلفی از تعادلات تسط محققین موزد بررسی قرار گرفته است. به طور کلی معادله حالت cpa برای محاسبات تعادلات جامد مایع (sle)، مایع-مایع (lle) و گاز-مایع (gle) در سیستم های دوتایی به کمک پادامتر اثر متقابل استفاده می شود. از سال 1996 این معادله برای مدل کردن سیستم های الکل-آب، آب-هیدروکربن، الکل-هیدروکربن و هم چنین سیستم های چند جزئی آب-الکل-هیدروکربن به کار برده می شود ]9[. تخمین های قابل قبولی که از فشار بخار و حجم مایع اشباع برای 73 سیال خالص تجمعی از قبیل الکل ها، اسیدهای کربوکسیلیک، آمین ها و آب به دست آمده نشان می دهد که میانگین انحراف مطلق بین مقادیر محاسبه شده و داده های آزمایشگاهی %09/0 در فشار بخار و %48/0 در حجم مایع اشباع می باشد.
فاطمه نیک بخت اکبر حیدری
اکسایش یکی از واکنش های بسیار کاربردی در صنعت محسوب می شود، با این وجود بسیاری از روش های صنعتی هنوز هم از مقادیر استیوکیومتری واکنشگر های فلزی با حالت اکسایش بالا استفاده می کنند. اکسایش یک واکنش اساسی و پایه ای در طبیعت و در شیمی آلی نیز محسوب می شود. اکسنده هایی که در طبیعت مورد استفاده قرار می گیرند اکسیژن ملکولی و هیدروژن پر اکسید هستند. بنابراین توسعه روش های جدیدی که اکسنده های دوستدار محیط زیست مثل اکسیژن ملکولی یا هیدروژن پراکسید را مورد استفاده قرار می دهند یا روش های سازگار با محیط زیست که بر اساس استفاده از مقادیر کاتالیتیکی از فلزات باشند را به کار می برند، یکی از اهداف مهم در شیمی اکسایش است. تبدیل اکسایشی آمین ها روش های قابل توجهی را برای تولید واحد های ساختمانی مهمی چون نایترون ها، ایمین ها، هیدروکسیل آمین ها، اکسیم ها و غیره را در اختیار می گذارد. با این اهداف تصمیم گرفته شد تا کاتالیست هایی گزینش پذیر برای دستیابی به اکسایش گزینشی آمین ها، با استفاده از اکسیژن مولکولی و هیدروژن پر اکسید، طراحی و مورد بررسی قرار گیرد. چارچوب های فلز-آلی (mofs) و پلیمرهای کئوردیناسیونی اخیرأ توجه گروه های تحقیقاتی زیادی را به خود جلب کرده اند و علت آن، پتانسیل کاربردی این ترکیبات در زمینه شیمی سنتزی، علم مواد و کاتالیست است. چارچوب های فلز-آلی، کاتالیست های فاز جامدی اند که به آسانی از مخلوط های واکنش جدا شده و بدون هیچ تغییری باز یافت شوند. در این رساله در ابتدا، تحقیق بر روی بررسی ظرفیت کاتالیستی یک چارچوب فلز-آلی با یون های مرکزی مس (mof-199) در اکسایش هوازی و گزینش پذیر آمین ها متمرکز شده است. سپس نشان داده شد که اکسایش کاتالیتیکی مؤثر آمین ها با استفاده از هیدروژن پراکسید به عنوان اکسنده استیوکیومتری در حضور پلیمر کئوردیناسیونی ارگانو قلع-اکسو نتگستات ( [(nbu3sn)2wo4]) انجام می شود. در مرحله بعد، تنگستو فسفریک اسید نشانده شده بر روی نانو ذرات مگمیت پوشش داده شده با سیلیکا سنتز شد و به عنوان یک کاتالیست ناهمگن مؤثر برای اکسایش مستقیم آمین های نوع دوم به نایترون ها با استفاده از هیدروژن پراکسید به عنوان اکسنده به کار گرفته شد. و در آخر یک سیستم اکسایشی از نوع "پاین" ( یک نیتریل آلی همراه با هیدروژن پراکسید یا کمپلکس افزایشی اوره-هیدروژن پراکسید) برای اکسایش آمین ها به کار گرفته شد. انواع متنوعی از آمین های نوع دوم و سوم با استفاده از تری کلرو استو نیتریل-هیدروژن پر اکسید، به طور مؤثری به نایترون ها و n-اکسید های مربوطه شان تبدیل شدند. این روش ها، شیوه هایی کارآمد و کلی برای برای سنتز ایمین ها، نایترون ها، اکسیم ها و آمین n-اکسید های نوع سوم، بوسیله اکسایش گزینش پذیر آمین های نوع اول، دوم و سوم را ارائه می دهند. به علاوه ترکیب واکنشگر ها نسبتأ ایمن بوده و واکنشگرها به صورت تجاری در دسترس هستند. واکنش ها کاملا گزینش پذیر بوده و در شرایط ملایمی رخ می دهد.