نام پژوهشگر: طوبی رضوانی سلیمان آبادی
طوبی رضوانی سلیمان آبادی علی مردان شاهرضایی
مسأله هدایت گرمای پسرو را به عنوان یک مسأله مقدار کرانه ای می شناسند. در حالت کلی معمولاً جوابی که در معادله گرما با مقدار اولیه و شرایط کرانه ای صدق کند، وجود ندارد. (این مسأله یک مثال واقعی از یک مسأله بدخیم است که به روش های نظام بخشی به خصوصی نیاز دارد.) [1] در این رساله سه روش عددی ارائه شده است. روش اول حل بنیادی می باشد که بدون استفاده از شبکه بندی و انتگرال گیری به کار گرفته شده است. در این روش با استفاده از جواب بنیادی، به عنوان توابع پایه ای، جواب اصلی معادله گرما مطرح می شود که برای تقریب درجه گرمای توزیع شده، لازم است فقط در شرط کرانه ای و داده های معلوم صدق کند. آنگاه دستگاه معادلات خطی بدوضع حاصل می شود که برای حل آن، روش منظم سازی تیخانف و روش منحنی ال را به طور موفقیت آمیزی به کار می گیریم. دو روش دیگر عبارت اند از روش تفاضل مرکزی و روش برگشت پذیر تقریبی، بعد از شرح مراحل هر دو روش به صورت جداگانه، آنها را در مثال های عددی با هم مقایسه می کنیم.