نام پژوهشگر: سیده معصومه زرگر
سیده معصومه زرگر صادق رحیمی شعرباف
مفهوم احاطه گری در گراف های فازی، هم از نظر تئوری و هم کاربردی، بسیار ارزشمند می باشد. در گراف فازی با مجموعه رئوس ، ، مجموعه احاطه گر فازی نامیده می شود هرگاه هر رأس ، توسط رأسی مانند احاطه شده باشد. در بیشتر مسائلی که تاکنون در مورد احاطه گری در گراف ها مطرح شده است، داده ها و اطلاعات مربوط به مسئله دقیق و مشخص است و وجود رأس ها و یال های گراف به صورت قطعی می باشد. در حالی که در دنیای واقعی ما نوعاً با داده ها و اطلاعات غیر قطعی مواجه هستیم. در گراف های فازی بر خلاف گراف های معمولی وجود رأس ها و یال ها بر اساس درجه تعلق نسبت داده شده به آنها مشخص می شود. که مقدار درجه تعلق رأس ها و یال ها عددی بین صفر و یک می باشد. احاطه گری در گراف ها در حل مسائل شاخه های مختلف علوم کاربردی مانند مسائل مکانیابی مورد استفاده قرار می گیرد. بدین ترتیب بررسی مفاهیم جدیدی مانند احاطه گری در گراف های فازی ضرورت پیدا می کند. در فصل اول تعاریف و مفاهیم اولیه در گراف های فازی ارائه شده است. درفصل دوم پارامتر های مختلف احاطه گری در گراف فازی و کرانهایی از آنها مطرح شده است. همچنین تغیرات عدد احاطه گری فازی در اثر افزایش و کاهش رأس ها و یال ها بیان شده است. و نیز در این فصل مفهوم احاطه گری در ترکیب، ضرب دکارتی و ضرب مطلق گراف های فازی بررسی شده است. در فصل سوم احاطه گری فازی قوی و احاطه گری فازی ضعیف مطرح شده است. در فصل چهارم به معرفی مفاهیمی دیگر از گراف های فازی مانند عدد پوشش رأسی، عدد پوشش یالی و تطابق در گراف های فازی پرداخته و ارتباط برخی از این مفاهیم با عدد احاطه گر فازی مورد بررسی قرار گرفته است. در فصل پنجم ابتدا قضایای جدیدی از احاطه گری در گراف های فازی را به اثبات می رسانیم. در انتها کاربرد هایی از احاطه گری فازی در حل برخی از مسائل مانند مکان یابی مراکز خدماتی، تعیین ایستگاه های رادیویی، شبکه های کامپیوتر و ... را مطرح می کنیم.