نام پژوهشگر: سروه شریفی فر
سروه شریفی فر حسین بیورانی
خانواده توزیع های پیرسن، خانواده ای شامل دوازده تابع چگالی احتمال پیوسته با چولگی و کشیدگی های مختلف است که بسیاری از توزیع های مهم و شناخته شده را هم شامل می شود. فصل اول این پایان نامه به معرفی خانواده توابع چگالی احتمال پیرسن یا سیستم پیرسن اختصاص دارد. در این فصل روش به دست آوردن این توابع چگالی احتمال، برآورد پارامترها و معیار تفکیک آن ها را بیان می کنیم. از اعضای این خانواده می توان برای برازش یک تابع چگالی احتمال پیوسته به داده هایی که توزیع نامشخصی دارند استفاده کرد که روش برازش توابع چگالی احتمال پیرسن به داده ها و چگونگی برآورد پارامترهای این توزیع ها را ذکر کرده و آن را با یک مثال عددی شرح می دهیم. در فصل دوم، یک تابع چگالی احتمال جدید معرفی می شود که از حاصلضرب دو تابع چگالی احتمال پیرسن نوع vii ساخته شده است و آن را تابع چگالی پیرسن نوع vii حاصلضربی می نامیم. سپس به کاربردهایی از این توزیع اشاره کرده و به بررسی ویژگی های ساختاری این توزیع جدید مانند تابع توزیع تجمعی، گشتاورها، برآورد ماکزیمم درستنمایی پارامترها، ماتریس اطلاع فیشر، میانگین انحراف از میانگین و میانه، آنتروپی و توزیع حدی آماره های مرتب فرین می پردازیم. در آخر، دو تابع چگالی حاصلضربی جدید را با استفاده از خانواده پیرسن معرفی کرده و گشتاور مرتبه kام آن ها را محاسبه می کنیم. در فصل سوم، کاربردهایی از تعدادی از توابع چگالی احتمال پیرسن مطرح می شود. ابتدا کاربردی از تابع چگالی پیرسن نوع vii حاصلضربی بیان می شود و از این تابع چگالی به عنوان توزیع پسین یک متغیر تصادفی و برای انجام یک آزمون بیزی در مورد میانگین توزیع نرمال استفاده می شود. در بخش بعد با استفاده از تابع چگالی پیرسن نوع i، یک تقریب پیوسته برای تابع احتمال دوجمله ای با پارامترهای n=50 و p=0.3 به دست آورده و آن را با تقریب هایی که از روش های دیگر به دست می آیند مقایسه می کنیم. کاربرد بعدی مربوط به تابع چگالی پیرسن نوع iii است که از آن برای برآورد حداکثر حجم آب یک رودخانه در یک ایستگاه هیدرومتری به ازای دوره های بازگشت مختلف استفاده خواهیم کرد.