نام پژوهشگر: علی معمارهمدانی
علی معمارهمدانی علیرضا مدقالچی
فرض کنیم s یک نیمگروه گسسته باشد. در این پایان نامه جبر نیم گروهی l^1(s)، میانگین پذیری و ثابت میانگین پذیری cs آن بررسی شده است. به خصوص نشان داده میشود که بازه (5,1) مقادیری ممنوع برای cs است و اگر >cs5، آنگاه s یک گروه است. نشان داده می شود که میتوان فضای کاراکترهای جبر باناخ l^1(s) را با فضای نیمکاراکترهای s یکی گرفت. جبر فوریه l^1(s) یک جبر تابعی باناخ است که لزوماً منظم نیست. در حالتی که g یک گروه باشد، جبر فوریه l^(g) منظم است و با جبر فوریه l^1(g/n) یکی است که n زیرگروه جابهجاگر g است. به علاوه برای یک نیمگروه آبلی s، l^1(s) نیم ساده است اگر و تنها اگر فضای نیمکاراکترهای s نقاط s را جدا کند. دقیقاً مشخص می شود l^1(s) چه زمانی یک جبر باناخ دوگان نسبت به c0(s) است. برای یک نیم گروه آبلی s، نشان داده می شود که l^1(s) یک جبر باناخ میانگین پذیر است اگر و تنها اگر s یک نیم مشبکه متناهی از زیرگروه های میانگین پذیر باشد. برای هر نیمگروه s، میانگینپذیری l^1(s) مشخص شده و در مورد جبر نیمگروهی ریس نیز بحث شده است.