نام پژوهشگر: سپیده نصراصفهانی
سپیده نصراصفهانی مجید فخار
در این پایان نامه به بررسی گسترش بردار مقداری اصول تغییراتی (اصول مینیمم سازی آَشفته) می پردازیم. در واقع منظور این است که اگر z یک کلاس از توابع حقیقی مقدار روی یک فضای متریک کامل x و تابع f از x به r از پایین کراندار و نیم پیوسته پایینی باشد، آیا عنصری مانند g از z موجود است به طوری که تابع g+f مینیمم خود را اختیار کند ؟ مسئله ی فوق را می توان در حالت کلی به صورت یک تابع f از x به y در نظر گرفت به طوری که y یک فضای باناخ حقیقی است که توسط یک مخروط نوکدار محدب بسته جزئا" مرتب شده است و بررسی کرد که آیا تابعی مانند g از x به y وجود دارد به طوری که g+f مینیمم داشته باشد. این مسائل به طور گسترده ای در [3?5?12?13?15] همچنین در [4?6?7?8?9?10?11?15?16] بررسی شده اند. در [15] دویل-فاینت با این فرض که درون مخروط ترتیب موجود روی y غیر تهی است، یک حالت بردار مقداری از اصل مینیمم سازی آَشفته دویل-گادفروی-زیزلر را برای توابعlsc-q ثابت کردند. در [6] نیز آن ها این نتیجه را بدون فرض بالا روی مخروط ترتیب برای توابع lsc به دست آوردند. همه ی این اثبات ها یک روند اسکالر سازی را به کار می گیرند، ما در اینجا یک حالت جدید نیم پیوستگی پایینی را معرفی می کنیم که از دو مفهوم دیگر ضعیف تر است و آن را نیم پیوستگی پایینی مرتب (o-lsc ) می نامیم و ارتباط آن را با مفاهیم دیگر نیم پیوستگی پایینی بررسی می کنیم. سپس یک حالت بردار مقداری از اصل مینیمم سازی آشفته دویل-گادفروی-زیزلر را برای توابع o-lsc بیان می کنیم که در اثبات آن از هیچ روند اسکالر سازی استفاده نمی شود (قضیه 72.2) و به عنوان نتیجه به گسترش بردار مقداری از اصل تغییراتی اکلند(نتیجه 2.81 ) و اصل مینیمم سازی آشفته ی بروین-پریس (نتیجه 2.82) می رسیم. ما اصول تعادل آشفته را نیز مطالعه می کنیم، یعنی نتایجی که وجود کوچکترین تابع آشفتگی ممکن را نشان دهد به طوری که g+f نقطه تعادل برداری داشته باشد. در [17] بیانچی-کسای و پینی یک حالت بردار مقداری از اصل تغییراتی اکلند را در ارتباط با مسائل تعادل با هدف یافتن نقطه ی تعادل برداری تقریبی اثبات کردند. به ما در اینجا یک حالت بردار مقداری جدید از اصل تغییراتی دویل-گادفروی-زیزلر را برای توابع دو متغیره از x x x بهyکه یک خاصیت جدید نیم پیوستگی دارند و (.,f(x برای هر x از پایین کراندار است، مطالعه می کنیم( قضیه3.16). همچنین به عنوان نتیجه، اصول تعادل آشفته اکلند و بروین-پریس را به دست می آوریم(نتایج 3.20 و 3.22).