نام پژوهشگر: طاهره مروج
طاهره مروج امیدعلی شهنی کرمزاده
تعریف: فضای توپولوژی x، یک فضای k تفکیک پذیر نامیده می شود، اگر به ازای هر دو نقطه متمایز a و b از آن، بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(b)=0. تعریف: فضای توپولوژی x با خاصیت t1 را، k- منظم می نامیم هرگاه به ازای هر x a و هر زیر مجموعه بسته که بتوانیم یک تابع c(x,k) f بیابیم که f(a)=1 و f(x)=0 و b در x . ابتدا توجه می کنیم که فضاهای k- منظم غیر یکسان ریخت x و y موجودند که (x,k)c و c(y,k) یکریخت می باشند و در ساختار حلقه c(x,k) نمی توانیم k- منظم بودن را بر حسب فشرده بودن بیان کنیم. تعریف: گیریم m1 و m2 مدول های راستی به ترتیب روی حلقه های r1 و r2 باشند. مدول های m1 و m2 را یکریخت گوییم هر گاه یکریختی حلقه ای g از r1 به r2و یکریختی گروهی h از m1 به m2 به گونه ای موجود باشد که به ازای هر f در r1 و x در m1 داشته باشیم h(xf)=h(x)g(f) . قضیه: گیریم k یک حلقه اول توپولوژی و x و y فضاهای k- منظم باشند. در این صورت یکسان ریخت بودن فضاهای x و y با یکریخت بودن (x ,k) c - مدول k^x و (y,k)-c مدول k^y معادل است. قضیه: با فرض اینکه x یک فضای دلخواه و k یک میدان توپولوژی باشد، گزاره های زیر معادلند: الف) حلقه (x,k)c، منظم است. ب) حلقه (x,k)c، -v حلقه است. پ) (x,k)c- مدول k^x، انژکتیو است. ت) (x,k)c- مدولk^x، تخت است. ث) (x,k)c یک زیر مدول سره از (x,k)c- مدول k^x است. گزاره: فرض کنیم x یک فضای k- منظم باشد. در این صورت تمام صفر مجموعه های (x,k)c بازند اگر و تنها اگر در فضای x ، هر مجموعه، باز باشد (x ، p- فضا نامیده می شود.) قضیه: فرض کنیم k یک حلقه توپولوژی دلخواه و x یک فضای k- تفکیک پذیر باشد. در این صورت گزاره های زیر معادلند: الف) فضای x، گسسته است. ب) (x,k)c- مدول k^x آزاد است. پ) (x,k)c- مدول k^x، پروژکتیو است.