نام پژوهشگر: محمد زمان فشمی
محمد زمان فشمی حسن حقیقی
در هندسه جبری یکی از مسائل مهم مطالعه هندسه یک مجموعه متناهی از نقاط میباشد چرا که مسائل بسیاری وجود دارد که تلاش برای حل آنها منجر به مطالعه هندسه یک مجموعه متناهی از نقاط میگردد از جمله مسئله درون یابی یا در مطالعه تکینگی های معمولی خم های آفین و یا در مطالعه بعد واریته های قاطع بالاتر مجبوریم هندسه یک مجموعه متناهی از نقاط را مطالعه کنیم. هدف ما در این پایان نامه مطالعه این مسئله به کمک تابع هیلبرت میباشد.چرا که تابع هیلبرت در وهله اول اطلاعاتی جبری در مورد حلقه مختصاتی واریته به ما میدهد و در وهله دوم اطلاعاتی هندسی در مورد پیکربندی نقاط به ما ارائه میکند. محاسبه تابع هیلبرت یک مجموعه از نقاط متناهی که دارای چندگانگی میباشند مسئله ای دشوار میباشد. برای اینکه بتوان پیچیدگی های مسئله را که ناشی از پیکربندی نقاط در فضای تصویری میباشد را کاهش داد فرض میکنیم این نقاط روی خم نرمال گویا قرار داشته باشند. در این پایان نامه مسائل زیر را را بررسی میکنیم 1)فرض کنیم خم نرمال گویای چند گانه داشته باشیم در فصل سوم تابع هیلبرت آن را محاسبه میکنیم. 2)فرض کنیم یک مجموعه از نقاط فربه متناهی که محمل آنها بر خم نرمال گویا واقع شده است داشته باشیم در فصل چهارم یک الگوریتم بازگشتی برای محاسبه تابع هیلبرت اسکیم صفر بعدی متشکل از مجموعه نقاط فوق ارائه میکنیم و نشان می دهیم تابع هیلبرت به موقعیت نقاط روی خم بستگی ندارد و تنها به چندگانگی نقاط بستگی دارد. همچنین نشان میدهیم در فضای تصویری دو بعدی تابع هیلبرت یک مجموعه متناهی از نقاط که در موقعیت عام قرار دارند بزرگتر مساوی از تابع هیلبرت یک مجموعه از نقاط متناهی است که بر خم نرمال گویا قرار دارند میباشد. 3)در فصل آخر تعمیم این مسئله کلاسیک که آیا خم نرمال گویایی در فضای تصویری وجود دارد که از تعدادی مشخص نقطه بگذرد و تعدادی مشخص زیر فضای خطی از متمم بعد دو از فضای تصویری را در تعداد مشخصی نقطه قطع کند بطوریکه بعد فضای تصویری با مجموع این نقاط و زیر فضاها خطی از متمم بعد دو رابطه مستقیم دارد.