نام پژوهشگر: فاطمه سخایی فر
فاطمه سخایی فر علی دولتی
مدل های نرخ شکست متناسب به طور گسترده ای در آنالیز بقا و قابلیت اطمینان استفاده می شوند. برای این مدل ها موارد زیادی پیش می آید که برخی از عوامل (یا متغیرهای مستقل) نامعلوم هستند و در نتیجه نمی توانند به طور صریح در تجزیه و تحلیل وارد شوند. در این گونه موارد مدل های نرخ شکست متناسب، کارایی لازم را ندارند. یک جایگزین مناسب در این حالت ها استفاده از مدل های شکنندگی است که عوامل در نظر گرفته نشده را در قالب متغیرهای غیر قابل مشاهده، که متغیرهای شکنندگی هم نامیده می شوند، وارد تجزیه و تحلیل می کنند. مدل های شکنندگی به دو صورت یک متغیره و چندمتغیره تعریف می شوند. در حالت کلی روشی مناسب برای انتخاب توزیع متغیر شکنندگی وجود ندارد و این موضوع که توزیع در نظر گرفته شده برای متغیر شکنندگی چه اثری روی متغیرهای جمعیت دارد، از اهمیت ویژه ای برخوردار است. هدف اصلی این پایان نامه، بررسی این موضوع است که چگونه ترتیب های تصادفی معروف مانند ترتیب نرخ شکست، ترتیب نسبت درستنمایی، ترتیب پراکندگی، ترتیب تبدیل لاپلاس و ترتیب تبدیلات محدب مربوط به متغیرهای شکنندگی، به ترتیب های مربوط به متغیرهای جمعیت منتقل می شوند. موضوع جالب دیگری که در این پایان نامه به آن می پردازیم، وابستگی بین متغیرهای شکنندگی و متغیرهای جمعیت است. این مسائل را در حالت یک متغیره برای مدل شکنندگی کلاسیک ضربی، مدل شکنندگی جمعی و مدل شکنندگی تعمیم یافته دنبال خواهیم کرد. برای حالت چند متغیره نیز نتایجی را به دست خواهیم آورد.