نام پژوهشگر: رحمت اله خاتمی
رحمت اله خاتمی حسین خبازیان
زیرمدول k ازm را تماما پایا گوییم اگر برای هر ? عضو (m)endr، (k)? زیرمجموعه k باشد. از جمله زیر مدول های تماما پایا ، زیر مدول های تکین می باشند و هر زیر مدول تماما پایا از یک مدول تزریقی ، شبه- تزریقی می باشد. زیر مدول های تماما پایای حلقه r به عنوان r-مدول دقیقا ایدال های r می باشند. مدول m را قویا fi-توسیعی می نامند اگر هر زیر مدول تماما پایای m در یک جمعوند تماما پایا، اساسی باشد در این پایان نامه به خواص این مدول ها پرداخته می شود. مدول m را توسیعی گوییم اگر هر زیر مدول آن در یک زیر مدول جمعوند m اساسی باشند. کلاس مدول های قویا fi- توسیعی شامل مدول های fi –توسیعی می باشد. کلاس مدول ها ی قویا fi –توسیعی و توسیعی زیر کلاسی از مدول های fi –توسیعی می باشد. بعضی خواص مدول ها که برای مدول های قویا fi –توسیعی و توسیعی برقرار است ممکن است برای مدول های fi –توسیعی برقرار نباشد. مثالی از یک مدول fi –توسیعی ارائه می دهیم که قویا fi –توسیعی نباشد. نشان می دهیم شرط قویا fi-توسیعی و fi-توسیعی یرای حلقه های نیم اول و مدول های ناتکین معادل است و هر زیر مدول جمعوند یک مدول قویا fi –توسیعی ، قویا fi-توسیعی می باشد. برخلاف مدول های fi-توسیعی ، مجموع مستقیم مدول های قویا fi- توسیعی ، لزوما قویا fi-توسیعی نیست. ویژگی قویا fi-توسیعی برای حلقه r یک خاصیت موریتا پایا است. همچنین نشان می دهیم حلقه درون ریختی از یک مدول قویا fi-توسیعی ، قویا fi-توسیعی می باشد. از جمله حلقه ها و مدول های قویا fi- توسیعی ، مدول های یکنواخت و مدول های نیم ساده و حلقه های اول می باشد.