نام پژوهشگر: سید علیرضا اشرفی
زهرا یاراحمدی سید علیرضا اشرفی
یک شاخص توپولوژیک یک کمیت عددی است که به یک گراف نسبت داده می شود، به طوری که تحت یکریختی گراف ها پایاست. از شاخص های توپولوژیکی که در این رساله مورد بررسی قرار گرفته است، می توان از عدد دوبخشی سازی یالی، رأسی، شاخص همبندی خروج از مرکز، شاخص وینر، سگد، پادماکار-ایوان رأسی و شاخص زاگرب اول ودوم نام برد. عدد دوبخشی سازی یالی یک گراف g عبارت است از کمترین تعداد یالی از g که به منظور به دست آوردن زیر گراف دوبخشی از آن بایستی حذف شود. عدد دوبخشی سازی رأسی،به طور مشابه و با حذف رئوس به دست می آید. این دو کمیت، شاخص ها یی توپولوژیک برای تعیین (نا) دوبخشی بودن یک گراف g است.این رساله به بررسی برخی خواص این دو شاخص توپولوژیک به همراه چند شاخص دیگر و محاسبه برخی از آن ها برای دسته هایی متنوع از گراف های فولرنی اختصاص دارد. در طی این کار مطالعاتی روی اعمال خاصی از گرافها و اثر آن روی این شاخص های توپولوژیک خواهیم داشت. به علاوه مرکز و محیط این گراف های حاصل ضربی را نیز مورد بررسی قرار خواهیم داد.
اشرف السادات متقی قمصری سید علیرضا اشرفی
شاخص توپولوژیک عددی حقیقی است که به یک گراف نسبت داده می شود و تحت یک ریختی گراف ثابت می ماند. شاخص های توپولوژیک برای بررسی خواص فیزیکی-شیمیایی ترکیبات شیمیایی به کار می روند. شاخص pi در مقاله ای در سال 2009 در تلاش جهت یافتن رابطه ای دقیق برای محاسبه ی شاخص pi رأسی حاصل ضرب دکارتی گراف ها معرفی شد. بعدها کاربردهای فراوانی از این شاخص در علوم نانو و شیمی به دست آمد. مطالعه ی ریاضی این شاخص از کارهایی است که اخیراً توسط اشرفی، یوسفی، ایلیچ، دیودی، استوانویچ و گوتمن به انجام رسیده است. در این تحقیق شاخص pi رأسی یک دسته ی نامتناهی از گراف های فولرنی را به دست می آوریم. هم چنین زنجیر و پیوند n نسخه از این فولرن را در نظر گرفته و شاخص pi رأسی آن ها را محاسبه می کنیم.