نام پژوهشگر: حبیب اشعثی سرخابی
ابوالفضل مومنی حبیب اشعثی سرخابی
روکش های ترکیبی نیکل- کبالت- فسفر- مس و نیکل- کبالت- فسفر- تنگستن به روش های الکترولس تهیه شدند. بررسی سرعت آبکاری به روش وزن سنجی انجام گرفت. از نتایج حاصله مشخص گردید که وجود عناصر تنگستن و مس در حمام الکترولس نیکل- کبالت- فسفر باعث افزایش سرعت آبکاری می شود. روش های semوedx به ترتیب برای مطالعه مورفولوژی و آنالیز عناصر روکش ها بکار برده شده و مشخص گردید که افزودن مس و تنگستن به پوشش الکترولس نیکل- کبالت- فسفر باعث ایجاد سطحی صاف تر شده و دانه بندی را ریزتر می کند. به منظور بررسی پایداری گرمایی روکش های ترکیبی ایجاد شده از روش dsc استفاده شد و مشخص گردید که افزودن عناصر مس و تنگستن باعث افزایش پایداری این روکش ها می شود. همچنین بررسی میزان سختی این روکش ها نشان می دهد که وجود عناصر مس و تنگستن در پوشش باعث افزایش سختی می شود. رفتار خوردگی روکش های ترکیبی ایجاد شده توسط روشهای الکتروشیمیایی(پلاریزاسیون و امپدانس الکتروشیمیایی) در محلول nacl5/3% در دمایc 250 مورد بررسی قرار گرفت. نتایج آزمایشات نشان می دهد که وجود عناصر مس و تنگستن درون پوشش نیکل- کبالت- فسفر، مقاومت به خوردگی این روکش های ترکیبی را افزایش می دهند. همچنین مطالعات خوردگی برخی از این روکش ها درحضور ودرغیاب سورفکتانت نشان دهنده این است که مقاومت خوردگی در حضور سورفکتانت افزایش یافته است.
علی بهادری محمدتقی تقی زاده
کیتوسان یک هتروپلی ساکارید متشکل از گلوکز آمین و n– استیل گلوکز آمین است که به وسیله پیوندهای( β(1→4 ، گلوکزیدی به هم اتصال یافته اند. کیتوسان از واکنش استیل زدایی کیتین که دومین پلی ساکارید از نظر فراوانی در طبیعت است بوسیله محلول بازی سدیم هیدروکسید تهیه می شود. در سال های اخیر تهیه نانوذرات کیتوسان در داروسازی و پزشکی برای کاربردهای مختلف از جمله حامل های دارویی و ژن درمانی مورد توجه قرار گرفته اند. یکی از روش های تهیه ی نانوذرات کیتوسان فرآیند فیزیکی ژلی شدن یونی براساس بر همکنش های یونی می باشد. کیتوسان در محیط اسیدی به علت باردار شدن گروه های آمینی به شکل پلی کاتیون درآمده و می تواند با گونه های دارای بار منفی مانند سدیم تری پلی فسفات (tpp) به عنوان پلی آنیون از راه برهمکنش های یونی سبب تشکیل نانوذرات کیتوسان شود. در این کار پژوهشی ابتدا کیتوسان های اصلاح شده با گروه های 3, 4-دی هیدروکسی بنزوئیل(cs-dhba) و3, 4, 5- تری هیدروکسی بنزوئیل (cs-thba) از واکنش کیتوسان(cs) با ترکیبات 3, 4- دی هیدروکسی بنزوئیک اسید (dhba)و 3, 4, 5- تری هیدروکسی بنزوئیک اسید (thba) در حضور n- (3- دی متیل آمینوپروپیل)- n- اتیل کربو دی ایمید هیدروکلراید (edc) و n- هیدروکسیل سوکسین ایمید (nhs) تهیه شدند و ساختار شیمیایی آنها با استفاده از روش های طیف سنجی 1h nmr، ft-ir، میکروسکوپ الکترونی روبشی (sem) و الگوی پراش اشعه x (xrd) مورد بررسی قرار گرفتند و اتصال گروه های 3, 4-دی هیدروکسی بنزوئیل و 3, 4, 5- تری هیدروکسی بنزوئیل به کیتوسان تأئید شدند. در مرحله بعدی با استفاده از سدیم تری پلی فسفات (tpp)، نانوذرات کیتوسان و کیتوسان های اصلاح شده سنتز شدند و خواص فیزیکوشیمیایی نانوذرات از جمله اندازه ذرات، پتانسیل زتای ذرات،مورفولوژی ذرات و خواص مکانیکی آنها با روش های مختلف از جمله تفرق نور پایا (dls)، میکروسکوپ الکترونی عبوری (tem) و الگوی پراش اشعه x (xrd) مورد بررسی قرار گرفتند. اندازه نانوذرات cs، cs-dhba و cs-thba اندازه گیری شده به روش tem، به ترتیب برابر nm 98، nm 144/4 و nm 112بودند. در مرحله بعدی، تخریب آنزیمی، تابشی و فراصوتی کیتوسان، cs-dhba و cs-thba، مورد مطالعه قرار گرفتند و اثر تخریب آنزیمی، تابشی و فراصوتی روی خواص شیمی فیزیکی از جمله جرم مولکولی و ویسکوزیته با استفاده از روش های کروماتوگرافی ژل تراوا و ویسکومتری مورد بررسی قرار گرفتند. در بررسی سینتیک تخریب فراصوتی کیتوسان، cs-dhba و cs-thba، ثابت های سرعت واکنش تخریب برای هرسه ترکیب محاسبه شدند و اثر غلظت نیز روی تخریب مطالعه شد، مشخص شد که سرعت تخریب به ترتیب cs4 > cs8> cs12> cs-thba4 > cs-thba8≈csdhba4 > cs-thba12 > cs-dhba8 > cs-dhba12 است.تخریب تابشی کیتوسان ، cs-dhba و cs-thba تحت تابش uv مورد مطالعه قرار گرفت.نتایج نشان دادکه وزن مولکولی کیتوسان با افزایش زمان تابش از782401 به g/mol 560359 کاهش می یابدولی وزن مولکولی cs-dhba و cs-thba با افزایش زمان تابش به ترتیب از 824152 به 825187 و از815160 به g/mol 834431 افزایش می یابد. در تخریب تابشی cs-dhba و cs-thba بعداز12 ساعت، با توجه به نتایج بدست آمده از ft-ir و ویسکومتری مشخص شد که به دلیل اتصالات عرضی تشکیل شده، عمل شبکه ای شدن شدن انجام شده است و ساختارهر دو ترکیب تغییر کرده است. در تخریب آنزیمی کیتوسان، cs-dhbaو cs-thba مشخص شد که سرعت تخریب با افزایش غلظت نمونه ها زیاد می شود. ثابت های میکالیس – منتن برای آنزیم کیتوساناز و سوبستراهای کیتوسان، cs-dhba و cs-thba به ترتیب برابر m 5-10 × 5/3، m 4-10 × 1/2 و m 5-10 × 8/6 تعیین شدند.