نام پژوهشگر: داریوش بهمردی شریف آباد
لیلی شیرازی داریوش بهمردی شریف آباد
در این تحقیق ویژگی هایی از فضاهای باناخ را که نقش بسیار مهمی در تحلیل الگوریتم های تکراری عملگرهای غیر خطی در فضاهای باناخ ایفا می کنند را بررسی می کنیم. در فصل 2 به معرفی کلاس های فضاهای محدب یکنواخت می پردازیم و در فصل 3 کلاس فضاهای به طور یکنواخت هموار را ارایه می کنیم.در فصل 4 نگاشت دوگانی که یک ابزار مهم در آنالیز تابعک های غیر خطی است را معرفی می کنیم. در فصل 6 به بررسی همگرایی دنباله های تکراری ایشیکاوا برای نگاشت های لیپشیتز افزاینده می پردازیم.
طاهره خزاعی داریوش بهمردی شریف آباد
با بررسی قضیه های کلاسیک باناخ-استون، گلفاند-کلموگروف و کاپلانسکی در می یابیم، یک فضای هاسدورف فشرده x منحصراً به وسیله ساختار طولپای خطی، ساختار جبری و ساختار شبکه ای به ترتیب از فضای c(x) تعیین می شوند. در این پایان نامه نشان داده شده است، برای زیر فضاهای نسبتاً عمومی a(x) و a(y) به ترتیب از c(x) و c(y) هر دوسویی خطی t ازa(x) به a(y) به یک همسان ریختی h از x به y منجر می شود که در آن t یک عملگر ترکیبی وزن دار است، به طوری که f بزرگتر یا مساوی با صفر است اگر و فقط اگر tf بزرگتر یا مساوی باصفر. قضیه های ذکر شده را می توان به فضاهای توابع پیوسته یکنواخت، توابع لیپ شیتز و توابع مشتق پذیر تعمیم داد که توسط مولفین مقاله order isomorphisms on function spaces صورت گرفته است. کلمات کلیدی: قضیه باناخ- استون، فشرده سازی استون- چک، یکریختی مرتب، یکریختی شبکه ای, یکریختی جبری، تابع پایا، زیر فضای کافی، تابع لیپ شیتز.