نام پژوهشگر: کیوان کثیری
کیوان کثیری کامران کاظمی
در این پایان نامه، هدف ارائه روشی جهت ناحیه بندی خودکار تصاویر تشدید مغناطیسی مغز به سه بافت ماده سفید، ماده خاکستری و مایع مغزی-نخاعی می باشد. در روش ناحیه بندی ارائه شده، الگوریتم یادگیری مبتنی بر ماشین های بردار پشتیبان با قدرت طبقه بندی بالا و خطای عمومی سازی پایین به کار گرفته می شود. در این روش، الگوریتم کمترین مربعات به منظور تخمین تابع چگالی احتمال بافت ها انتخاب شده است. به منظور کاهش هر چه بیشتر دخالت کاربر در روند ناحیه بندی، از اطلاعات اولیه اطلس جهت انتخاب نمونه های آموزشی و نیز آموزش الگوریتم یادگیری استفاده می شود. جهت بهبود دقت نتایج در روش ارائه شده، مدلی سلسله مراتبی به عنوان روش پیشنهادی دوم جهت ناحیه بندی پیشنهاد شده است. در این مدل طی سه مرحله، عملیات حذف بافت های غیر مغزی، پیش پردازش و استخراج مایع مغزی-نخاعی، و ناحیه بندی ماده سفید و ماده خاکستری انجام می گردد. پس از آن، یک روش ترکیبی به عنوان روش سوم پیشنهادی در قالب مدل سلسله مراتبی ارائه شده جهت ناحیه بندی مورد استفاده قرار می گیرد. در این روش، به منظور انجام دو مرحله اول از روش سلسله مراتبی از روش ناحیه بندی fsl-fast استفاده می شود. نتایج شبیه سازی بر داده های شبیه سازی شده و واقعی و ارزیابی های کمی و کیفی موید دقت و کارایی مدل سلسله مراتبی ترکیبی در مقایسه با روش های متداول ناحیه بندی و نیز روش fsl-fast می باشد. نتایج ناحیه بندی تصاویر مغزی به دست آمده می تواند به کمک پردازش های بعدی در تحلیل آناتومی و یا تشخیص بیماری ها و آسیب های مغزی مورد استفاده قرار گیرد.