نام پژوهشگر: شکوفه جلیلوند
شکوفه جلیلوند فرشید میرزایی
در این پایان نامه به معرفی روش بسط سری-تیلور برای حل عددی معادلات انتگرال ولترا و فردهلم و معادلات انتگرو-دیفرانسیل ولترا و فردهلم می پردازیم. با استفاده از این روش ابتدا جواب مساله را بر حسب بسط سری-تیلور می نویسیم و سپس با جایگذاری در معادلات انتگرال و معادلات انتگرو-دیفرانسیل، به یک دستگاه معادلات جبری می رسیم که با حل دستگاه معادلات جبری بدست آمده تقریب خوبی از جواب معادله انتگرال و معادله انتگرو-دیفرانسیل حاصل می شود. این پایان نامه شامل چهار فصل می باشد. در فصل اول مقدمه ای کوتاه در مورد تاریخچه معادلات انتگرال و معادله انتگرو-دیفرانسیل و تعاریف لازم آورده شده است. در فصل دوم به روش بسط سری-تیلور و استفاده از آن برای حل عددی معادلات انتگرال ولترا و فردهلم پرداخت شده است. در فصل سوم از روش بسط سری-تیلور و استفاده از آن برای حل عددی معادلات انتگرو-دیفرانسیل ولترا و فردهلم استفاده شده است.در فصل چهارم به معرفی نوعی روش بسط برای حل عددی معادلات انتگرال ولترا خطی که شبیه به بسط سری-تیلور می باشد، می پردازیم و آن را با روش بسط سری-تیلور مقایسه می کنیم.