نام پژوهشگر: شراره امیری
شراره امیری کمال شانظری
روش عناصر مرزی، به عنوان یک تکنیک عددی قوی برای حل بسیاری از معادلات دیفرانسیل جزئی به کار می رود. اما وجود جملات ناهمگن در بسیاری از معادلات، سبب به وجود آمدن انتگرال های دامنه ای در فرمول روش عناصر مرزی می شود که کارایی تکنیک را تا حد زیادی کاهش می دهد. برای مقابله با این مشکل، تکنیک های بسیاری پیشنهاد شده است. در این پایان نامه، به منظور حل مسأله ی ناپایدار انتقال حرارت، از روش عناصر مرزی استفاده می شود که وجود جمله ی ناهمگن وابسته به زمان، باعث می شود یک انتگرال دامنه ا ی در معادله ظاهر شود. برای تبدیل این معادله به یک معادله ی انتگرال مرزی، از دو روش استفاده شده است. در روش اول، ابتدا تابع مجهول وابسته به زمان توسط دنباله ای از توابع پایه ی شعاعی، درونیابی می گردد و برای به دست آوردن معادله ی انتگرال مرزی، از جواب اساسی معادله ی لاپلاس که یک تابع مستقل از زمان است، استفاده می شود. سپس جواب معادله ی انتگرال حاصل، با گسسته سازی مرز ناحیه و صرفاً با انجام انتگرال گیری مکانی به دست می آید. در روش دوم، از جواب اساسی وابسته ی زمانی که کل معادله ی انتقال حرارت، از جمله بخش وابسته به زمان را تحت پوشش قرار می دهد، استفاده می شود. بنابراین معادله ی انتگرال نتیجه شده، شامل انتگرال های مختلط مکانی و زمانی است که برای حل آن از گسسته سازی مرز و متغیر زمانی استفاده می گردد.