نام پژوهشگر: جهانشاه کبودیان
سید محمد صادقی منصور ولی
شناسایی خودکار زبان گفتاری به تشخیص زبان از روی سیگنال گفتار گفته می شود. این سیستم ها اغلب با مقایسه امتیاز تعلق سیگنال گفتار به زبان های مختلف تصمیم گیری می کنند. در این تحقیق برای اصلاح روش gmm-ubm که از روش های به روز بازشناسی زبان است، روشی جدید مبتنی بر بردارهای ویژگی منتخب مطرح شد که در آن تنها تعدادی از بردارهای ویژگی گفتار که به صورت هم پوشان در تمامی زبان ها وجود دارد و موجب ایجاد خطا می گردد، حذف گردد. در این روش با بکارگیری بردارهای ویژگی منتخب شیفت یافته کپسترال (sdc)، یک مدل مخلوط آمیزه ای (gmm) توسط دادگان غیرهم پوشان هر یک از زبان ها، از روی مدل پس زمینه جامع (ubm) تطبیق داده می شود. نتایج این روش با روش متداول gmm-ubm که روی دادگان ogi-ts برای شناسایی 5 زبان آموزش داده شده است و قبل از مرحله آموزش، نواحی سکوت با استفاده از آشکارسازی نواحی گفتاری (vad) حذف شده اند، مقایسه شده است. سیستم های بازشناسی برای سه دسته از فایل های گفتار آزمون 3 ثانیه ای، 10 ثانیه ای و 45 ثانیه ای ارزیابی شده اند و بهترین نتایج حاصله در روش مبتنی بر بردارهای منتخب نسبت به روش gmm-ubm مبتنی بر vad برای فایل های گفتار آزمون 3 ثانیه ای، 10 ثانیه ای و 45 ثانیه ای به ترتیب منجر به 29/6، 47/5 و 76/2 درصد بهبود در نرخ بازشناسی زبان (lir) شده است. در پایان برای بهبود عملکرد سیستم بازشناسی، تصمیم گیری نهایی برای انتخاب زبان هدف به عهده یک شبکه عصبی مصنوعی نهاده شده است که به عنوان یک پس پردازش گر امتیازات خروجی عمل می نماید.