نام پژوهشگر: جعفر ملکی زنجانی

جوابهای نویافته ی سالیتونی برای معادله شبهkpتزویج شده به معادله شرودینگر
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392
  صادق تدریسی   جعفر ملکی زنجانی

در این پایان نامه جواب های جدید برای معادلات دیفرانسیل جزئ pde معروف،ازنوع سالیتون یا امواج منفرد بررسی شده است. با در نظر گرفتن جواب های عمومی معادله موج کلاسیک و انواع مختلفی از آن،زمینه لازم با تمرکز به خصیصه هایی از جمله خطی،غیرخطی و پاشندگی معرفی شده است. یک روش ساده و موثر برای بدست آوردن جواب های دقیق جدید موج رونده از(pde)غیرخطی، روش تعادل همگن پیشنهاد شده است. علاوه بر آن این روش برای حل معادله ریکاتی و معادله دیفرانسیل معمولی غیرخطی تبدیل یافته از (pde)غیرخطی نیز بکار برده شده است.

آشوب چند جمله ای برای مسائل مقدار مرزی از سیستمهای دینامیکی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392
  سعید میرزایی مزرعه   جعفر ملکی زنجانی

ر این پایان نامه حل مسائل مقدار مرزی از سیستمهای دینامیکی با پارامترهای مبهم بررسی و رویکرد آشوب چند جمله ای برای چنین مسائلی مطالعه میگردد.متغیرهای تصادفی که دارای ابهام هستند را در نظر میگیریم. مدل تصادفی حاصل با رویکردآشوب چند جمله ای حل شده است. در رویکرد مداخله ای تعداد زیادی از دستگاه های غیر خطی با بعد نسبتا کوچک ظاهر می شوند و رویکرد مداخله ای فقط یک دستگاه با بعد بالا ظاهر می شود. از روش تلفیقی که مزیت دو روش مداخله ای و غیر مداخله ای را دارد مورد بررسی قرار میدهیم.

جواب های نو یافته شبه تابع بیضوی ژاکوبی برای معادله عام kdv با ضرایب متغیر
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392
  مینا رامشب   جعفر ملکی زنجانی

در این پایان نامه ابتدا مروری بر توابع بیضوی ژاکوبی و همچنین معادله kdv که برای اولین بار توسط کورتوگ- د وریز کشف و دارای جواب هایی از نوع سالیتونی می باشد، داشته و سپس با روش تغییر شکل نگاشت عام اصلاح شده بر پایه ی روش بسط توابع بیضوی ژاکوبی تعمیم یافته، روند بدست اوردن جواب های دقیق جدید از یک نوع معادله kdv تعمیم یافته با ضرایب متغیر، بیان شده است. در ادامه با استفاده از برنامه کامپیوتری نرم افزار میپل، هفت خانواده جدید از نوع جواب های شبه تابع بیضوی ژاکوبی تعمیم یافته، شبه سالیتونی و جواب های مثلثاتی بدست آمده اند که نشان میدهد این روش کارایی بسیار داشته و میتواند برای پیدا کردن جواب های جدید، برای انواع دیگری از معادلات دیفرانسیل جزئی غیر خطی نیز که در ریاضی فیزیک ظاهر می شوند مورد استفاده قرار گیرد.

طراحی شکل بهینه برای یک نازل (به کمک نظریه اندازه)
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان 1386
  احسان ضیایی   جعفر ملکی زنجانی

چکیده ندارد.

روش تجزیه اصلاح شده برای معادلات انتگرال ولترا-فردهلم غیرخطی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان 1387
  رقیه مقیمی   جعفر ملکی زنجانی

چکیده ندارد.

جوابهای مثبت و یکنوای مسائل مقدار مرزی ‏‎m‎‏- نقطه ای
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان 1382
  ارشد بیانی   جعفر ملکی زنجانی

دراین پایان نامه با توجه به اینکه اغلب از فضاهای اندازه پذیر ، هیلبرت ، باناخ و توابع محدب استفاده می شود ، ابتدا در فصل اول پیش نیازها، خلاصه ای از بحث فضاهای اندازه پذیر، هیلبرت و باناخ را مطرح می کند که در بردارنده تعاریف اساسی و یادآوری قضایایی است که در متن پایان نامه مورد استفاده قرار می گیرد. در فصل دوم ، ابتدا موضوع مقاله ای از ارب و ونگ که با استفاده از قضیه کراسنوسلسکی به اثبات قضیه زیر می پردازد.در فصل سوم این پایان نامه جواب مثبت مسئله مقدار مرزی مرتبه دوم سه نقطه ای مورد مطالعه قرار می گیرد.در فصل چهارم این پایان نامه جواب مثبت مسئله مقدار مرزی مرتبه دوم ‏‎m‎‏ نقطه ای مورد مطالعه قرار می گیرد.در فصل پنجم موضوع اصلی پایان نامه مقاله ای با عنوان جوابهای مثبت و یکنوای مسئله مقدار مرزی ‏‎m‎‏ نقطه ای مورد بررسی و مطالعه قرار داده می شود.