نام پژوهشگر: حسن حسن آبادی
الهام جوادی منش علی اکبر رجبی
یکی از فرآیند های فیزیکی نسبتا ساده که می تواند به صورت موفقیت آمیزی چارچوب مقدماتی تئوری مکانیک کوانتمی را شرح دهد واپاشی آلفا است. گسیل آلفا یکی از مهمترین مد های واپاشی برای هسته های سنگین است. با استفاده از فرآیند واپاشی آلفا می توان به دانش های مختلفی از جمله: ساختار هسته، اسپین- پاریته، انرژی حالت پایه، نیمه عمر حالت پایه، اثرات لایه ای و برهم کنش های هسته ای دست یافت. از آنجاییکه واپاشی آلفا اطلاعات مهمی در رابطه با هسته مادر به ما می دهد، بررسی آن می تواند ما را به سمت شناخت هسته های جدید هدایت کند. در کار حاضر، ما در ابتدا به بررسی واپاشی آلفا از طریق تئوری مکانیک کوانتمی و تقریب wkb پرداخته ایم، سپس کارمان را بر روی پتانسیل انتخابی که به عنوان سد در مقابل ذره آلفا است متمرکز کرده ایم. واپاشی آلفا را در دو فصل مورد بررسی قرار داده ایم: برای هسته های کروی، نیمه عمر ایزوتوپ های مختلف را با استفاده از روش مشتق گیری و مینیمم کردن ، تقریب پتانسیل عمومی، روش تقریب پتانسیل یوکاوا و همچنین با استفاده از دو نمونه پتانسیل تعمیم یافته به دست آورده ایم. برای هسته های تغییر شکل یافته، نیمه عمر را با استفاده از دو روش تقریب پتانسیل عمومی و روش تقریب پتانسیل یوکاوا به دست آورده ایم. برای چنین هسته هایی پارامتر های تغییر شکل چهار قطبی، شانزده قطبی و سی و دو قطبی را در شعاع هسته وارد کرده ایم و نیمه عمر را در حالت های هسته مادر تغییر شکل یافته، هسته دختر تغییر شکل یافته و هسته مادر و هسته دختر تغییر شکل یافته به دست آورده و با هم مقایسه نموده ایم.
بنت الهدی یازرلو حسن حسن آبادی
مدل استاندارد فیزیک ذرات ذرات بنیادی و چگونگی برهم کنش این ذرات را توصیف می کند. در طی سال های گذشته، داده های آزمایشگاهی به دست آمده از آزمایشات مختلف در فیزیک انرژی-های بالا پیش بینی های مدل استاندارد را با دقت بالایی تایید کرده اند. مدل استاندارد به منظور تولید جرم ذرات بنیادی متکی به شکست خود به خود تقارن می باشد، که بدون آن ذرات بنیادی بدون جرم باقی می مانند. هنگامیکه مکانیزم شکست خود به خود تقارن در فیزیک ذرات به کار برده می شود، منجر به تولید ذره ی اسکالری به نام بوزون هیگز می شود. بوزون هیگز یکی از ذرات استاندارد مدل است، که وجود آن در فیزیک ذرات از اهمیت بالایی برخوردار است. این ذره به منظور توضیح منشا جرم تمامی ذرات دیگر معرفی شده است. در سال-های اخیر، جستجوی بوزون هیگز به مرکز توجه آزمایشات تبدیل شده است. در این پایان نامه سعی بر آن شده است که علاوه بر توضیح خواص بوزون هیگز، مکانیزم های تولید و مدهای واپاشی آن در استاندارد مدل، به بررسی و محاسبه ی سطح مقطع بوزون هیگز استاندارد مدل، مدهای واپاشی آن و بررسی معادلاتی که میدان های وابسته به بوزون های اسپین صفر را می-دهد، بپردازیم. به منظور محاسبه ی سطح مقطع بوزون هیگز از برنامه ی نرم افزاری calchep استفاده کرده ایم. این برنامه به منظور شبیه سازی فرآیندهای فیزیکی انرژی بالا و محاسبه ی آنها در سطح پارتونی طراحی شده است، که سطح مقطع بوزون هیگز استاندارد مدل را برای مکانیزم های متفاوت تولید بوزون هیگز محاسبه کرده و به مقایسه ی آنها پرداخته ایم.
الهام مقصودی حسن حسن آبادی
در چند دهه نخست قرن بیستم، مدل های مفهومی در زمینه فیزیک هسته ای نقش آفرینی اساسی داشتند و برای مطالعه ساختار هسته مدل هایی از جمله مدل های قطره مایع، لایه ای و کوارک-مانند ارائه شده اند. این پایان نامه براساس مطالعه ی مدل لایه ای و به دست آوردن سطوح انرژی برهمکنش فوق ریز می باشد. ابتدا به منظور بررسی مدل لایه ای در محدوده ی مکانیک کوانتومی غیرنسبیتی، معادله شرودینگر را در حضور پتانسیل وود-ساکسون حل کرده و با در نظر گرفتن اصل طردپائولی برای ایزوتوپ های منیزیم طیف انرژی را برای سطوح مختلف به دست می آوریم سپس با وارد کردن برهمکنش اسپین-مدار به عنوان جمله اختلالی، اثر این پتانسیل را روی مدل لایه ای بررسی می کنیم و علاوه بر این معادله شرودینگر را برای پتانسیل های وود-ساکسون و اسپین-مدار بدون در نظر گرفتن هیچ گونه تقریبی برای هسته های پایدار و ناپایدار به روش عددی حل کرده و نتایج به دست آمده از دو روش تحلیلی و عددی را مقایسه می کنیم. بعلاوه ویژه توابع برحسب توابع فوق هندسی گزارش شده اند. سپس برای بررسی مدل لایه ای و سطوح انرژی در محدوده مکانیک کوانتومی نسبیتی، معادله ی دیراک را برای تک نوکلئون منفرد موجود در هسته در شرایط تقارن اسپینی و تقارن شبه اسپینی در حضور پتانسیل های فیزیکی مناسب شعاعی و زاویه ای حل کرده و طیف انرژی و مولفه های اسپینور دیراک را بدست می آوریم و با در نظر گرفتن پتانسیل تانسوری، اثر این پتانسیل را بر طیف انرژی بدست آمده از حل معادله ی دیراک و تبهگنی های موجود بین حالت های مقید بررسی می کنیم و بستگی ویژه مقادیر انرژی را به برخی از پارامتر های پتانسیل و برخی دیگر از پارامتر های موجود در مساله در هر دو حالت غیرنسبیتی و نسبیتی توصیف می کنیم. در نهایت به بررسی یک مساله بنیادی در مکانیک کوانتومی غیرنسبیتی می-پردازیم و طیف انرژی یک ذره را در میدان پتانسیل کولنی یک دومرکزی حاصل از شکافت به دست می آوریم و رفتار انرژی را برحسب پارامتر های بکارگرفته شده در مساله بررسی می کنیم.
زهرا مولایی حسن حسن آبادی
معادله ی dkp (duffin-kemmer-petiau)، یک معادله ی نسبیتی مرتبه ی اول برای بوزون های اسپین صفر و یک می باشد و دردهه ی 1930توسط duffin ,kemmer ,petiau ارائه شد و این نظریه در سال های 1939 تا 1970 در زمینه های مختلف توسعه یافت. این معادله در بسیاری از شاخه های فیزیک از جمله کیهان شناسی ، برهم کنش های هادرون- هسته و طیف سنجی مزون ها کاربرد دارد از این رو می توان ذراتی مانند فوتون ها، گلوئون ها، مزون ها، اکسیتون ها، ذرات واسطه ی را توسط معادله ی dkpمورد مطالعه قرار داد. لذا در فصل اول مقدمه ای در رابطه با معادله ی dkp و مفاهیم بنیادی این نظریه، بیان خواهد شد به طوری که خصوصیات جبری ماتریس هایdkp، اثبات هامیلتونی معادله ی مذکور و حد غیر نسبیتی آن ارائه خواهد شد. و در فصل دوم مروری خواهیم داشت بر بررسی بخش های اسپین صفر و یک معادلهdkp در سه بعد فضا-زمان. در فصل سوم برخی از خصوصیات فیزیکی در نظریه ی dkp مورد بررسی قرار خواهد گرفت. از آن جمله می توان به تقارن های cptو ناوردایی پیمانه ای و بررسی پتانسیل آهارانوف – بوهم اشاره کرد. در فصل چهارم پراکندگی بوزون های اسپین-یک و اسپین-صفر در حضور برهم کنش های وود-ساکسون وپله پتانسیل مورد بررسی قرار خواهد گرفت. بخش اسپین – یک معادله ی dkp درحضور برهم کنش های هذلولی گون و هولسن تغییر شکل یافته به کمک روش nu ودر فضای دو و سه بعدی حل خواهد شد و نتایج عددی ویژه مقادیر انرژی، توابع موج به ازای اعداد کوانتومی مختلف ارائه خواهد شد.
نوشین بهادر احمد دارابی
استفاده از مغناطیس های دائم در ماشین های الکتریکی، سبب حذف تلفات اهمی بخش تحریک ماشین و به دنبال آن افزایش راندمان می گردد. از سوی دیگر استفاده از pm ها نه تنها ساختار ماشین را ساده و مستحکم می نماید وزن و حجم ماشین را کاهش و در نتیجه نسبت توان (گشتاور) به وزن (حجم) ماشین را افزایش می دهد. به هر حال از آن جهت که مغناطیس های دائم نقش اساسی در ساختار ماشین دارند، کوچکترین تغییر در مشخصه مغناطیسی آنها، احتمال بروز اختلال در عملکرد ماشین را به دنبال خواهد داشت. یکی از پدیده هایی که خواص pm را تغییر می دهد، پدیده مغناطیس زدایی است. این پدیده، وابسته به شدت و ضعف آن، با تغییر دامنه و شکل موج ولتاژ القایی، مشخصه عملکردی ماشین را تغییر خواهد داد. با وجود اهمیت بسیار زیاد این مساله، طراحی ماشین های pm همچنان بدون در نظر گرفتن این پدیده و تاثیرات آن انجام می گیرد. در این پایان نامه، تکنیک طراحی و مدلسازی کلاسیک ماشین های مغناطیس دائم با منظور کردن پدیده مغناطیس زدایی اصلاح و الگوریتم پیشنهادی روی یک موتور مغناطیس دائم شار محوری نمونه پیاده سازی شده است. نتایج بدست آمده از شبیه سازی نشان می دهند چنانچه طراحی و مدلسازی بر مبنای روش کلاسیک انجام شود، مشخصه های عملکردی بدست آمده برای ماشین همراه با خطا خواهد بود، به گونه ای که شاید ماشین خواسته های عملکردی مورد انتظار را نتواند به درستی برآورده نماید. علاوه بر این، نتایج این گزارش نشان می دهند زمانی که امکان محدود نمودن جریان آرمیچر وجود ندارد، استفاده از دمپر در ساختار موتور شار محوری در رژیم گذرایی می تواند تا حد قابل توجهی از شدت بروز این پدیده بکاهد. علاوه بر این نشان داده می شود که می توان بجای صرف هزینه و وقت جهت اصلاح ساختار ماشین هایی نظیر موتور مغناطیس دائم شار محوری، از ماشین های pm دیگر با قدرت یکسان و کاربری مشابه که احتمال بروز این پدیده در آنها بسیار کمتر است استفاده کرد. موتور قطب چنگالی بررسی شده در این پایان نامه یکی از انواع ماشین های مغناطیس دائم شار متقاطع با ساختاری مقاوم در برابر مغناطیس زدایی است، که می تواند جایگزین مناسبی برای ماشین های شار محوری باشد.
سارا رحمانی حسن حسن آبادی
تعیین تابع ساختار هادرون ها یکی از مهمترین مسائل فیزیکی در qcdاست. برای این منظور ابتدا ویژه توابع و ویژه حالت های سیستم را تعیین می کنیم و سپس با استفاده از تابع موج تعیین شده تابع ایسگور-وایس را برای این سیستم بدست می آوریم. این تابع دارای این خصوصیت است که به کمک آن می توان خواص استاتیکی سیستم را مشخص نمود. برای تعیین تابع موج سیستم در حالت غیرنسبیتی از معادله شرودینگر و برای سیستم های نسبیتی از معادلات سالپیتر، کلاین- گوردن (kg) و دافین -کمر -پتیو (dkp) استفاده می کنیم. بررسی حالت نسبیتی سیستم دو ذره ای لازم است، در سیستم مرکز جرم انجام شود. سپس با استفاده از تابع موج بدست آمده به بررسی تابع ایسگور- وایس پرداخته و خواص استاتیکی سیستم مزونی را استخراج می کنیم. ما مزون های را بررسی می کنیم که به ترتیب شامل ساختارهای کوارکی هستند. در چارچوب غیرنسبیتی با استفاده از معادله شرودینگر ابتدا تابع موج حالت پایه مزونی را می یابیم و سپس به بررسی غیر نسبیتی مشخصات سیستم مزونی می پردازیم. همچنین رفتار تابع ایسگور- وایس را در مورد دو کوارکونیوم و به کار می گیریم. در فصل سوم بررسی نیمه نسبیتی تابع ایسگور- وایس را برای مزون های b و d نشان می دهیم. در فصل چهارم رفتار تابع ایسگور- وایس را در حالت نسبیتی برای مزون های نیمه سنگین ارائه می کنیم. ما در این فصل علاوه بر مزون های اسپین صفر اشاره شده، پارامترهای تابع ایسگور- وایس را برای مزون های با اسپین یک شامل j/? و y بدست می آوریم.
مهدی کمالی حسن حسن آبادی
معادله دی- کی- پی نوع خاصی از معادله نسبیتی مرتبه اول برای ذره با اسپین دلخواه (قراردادی) به شمار می رود. این معادله دیراک گونه است که به بررسی بوزونهای اسپین صفر و یک می پردازد که در بسیاری از شاخه های فیزیک از جمله کیهان شناسی، برهمکنشهای هادرون-هسته و طیف سنجی مزونها کاربرد دارد. از اینرومی توان ذراتی مانند فوتونها ، گلوئونها، مزونها ، اکسیتونها را توسط معادله ی دی- کی- پی مورد مطالعه قرار داد. در این پایان نامه مقدمه ای در رابطه با معادله دی- کی- پی بیان شده است. سپس به خصوصیات جبری ماتریسهای دی- کی- پی و اثبات برخی از روابط آنها پرداخته شده است، در ادامه معادله ی دی- کی- پی در حضور پتانسیلهای مختلف اعم از پتانسیلهای مرکزی و غیر مرکزی بررسی شد و ویژه مقادیر انرژی و ویژه توابع انرژی بر حسب توابع فوق هندسی بدست آورده شد. سپس به بررسی پراکندگی بوزونهای اسپین صفر و یک در یک بعد پرداخته شد و در این راستا ضرایب عبور و بازتاب برای حالت پراکندگی و همچنین با استفاده از شرایط پیوستگی، حالتهای مقید برای بوزونهای اسپین صفر و یک بدست آورده شده است. ونهایتا به بررسی پراکندگی بوزونهای اسپین یک در سه بعد و معرفی انتقال فاز پرداخته شده است.
ابراهیم ممتازی بروجنی علی اکبر رجبی
مطالعه سیستم های چند ذره ای در سالیان اخیر بسیار مورد توجه محققان و دانش پژوهان در حوزه علوم هسته ای بوده است به همین بهانه در این پایان نامه نیز سعی شده است تا توصیف صحیحی از سیستم های دو و سه ذره ای با استفاده از رهیافت جدید تبدیل لاپلاس ارائه شود. این رهیافت جدید روشی مناسب برای مطالعه موردی سیستم های دو و سه ذره ای در حضور پتانسیل های متفاوت است. این پایان نامه با معرفی و بررسی ذرات بنیادی آغاز می شود و پس از آن به توصیف هسته و انرژی بستگی پرداخته شده است و با معرفی پتانسیل هسته ای یوکاوا، با به کارگیری تبدیل لاپلاس توصیفی از هسته ارائه شده است. سپس با استفاده از رهیافت تبدیلات لاپلاس سیستم های دو ذره ای برای تعدادی از پتانسیل های شناخته شده مورد بررسی قرار گرفته و در نهایت یک سیستم سه ذره ای در حضور پتانسیل کولنی و پتانسیل برهم کنشی اسپین- مدار راشبا مطالعه شده است.
سمیرا حسینی حسن حسن آبادی
در این پایان¬نامه اثرات مکانیک کوانتومی محض که مهمترین آنها اثر آهارونف-بوهم را در حضور میدان مغناطیسی قوی مورد مطالعه قرار داده و اثرات پارامتر فضای ناجابجایی و فضای فاز ناجابجایی را مورد بررسی قرار می¬دهیم. نخست، مکانیک کوانتومی ناجابجایی را معرفی کرده و نشان داده¬ایم که در این جبر، با اعمال تغییر جدید از فضای ناجابجایی به حالتی در فضای جابجایی نگاشته می¬شود. در ادامه، در فصل¬های بعدی ذرات قطبیده را در حضور میدان¬های الکتریکی و مغناطیسی یکنواخت در فضای جابجایی و ناجابجایی و هم در فضای فاز ناجابجایی مورد بررسی قرار می¬دهیم و برای این مدل طیف انرژی¬های لاندو را بدست می¬آوریم. اثرات شکافتگی ترازهای لاندو ناشی از اثر زیمان و میدان آهارونف-بوهم را مورد بررسی قرار داده و تحت شرایط خاصی می¬توان از اثرات آن چشم¬پوشی کرد که منجر به نتایج جالبی خواهد شد. آهارونف و بوهم اثر میدان مغناطیسی را برای حالت ماده در ناحیه خاص با میدان صفر را نشان دادند. این اثر در حضور پتانسیل برداری در حجمی که ذره حرکت می¬کند اتفاق می¬افتد و در مکانیک کوانتومی در فضای d بعدی هیچ میدانی وجود ندارد که برخلاف مکانیک کلاسیک به پتانسیل وابسته نباشد. آهارونف و کشر تابع موج ذره خنثی با گشتاور دوقطبی مغناطیسی غیرصفر را نشان دادند. ال.ریبریو اثر hmw و همچنین فازهای کوانتومی در دینامیک کوانتومی برای دوقطبی¬های مغناطیسی در حضور میدان الکتریکی بررسی کردند، که منشا آن اثر ac می¬باشد. ما بررسی معادلات را به روش های مختلف از جمله، نیکیفارو-یووارو و شبه دقیق و ... انجام داده¬ایم.
سپیده سرگلزایی پور نسرین صالحی
تک قطبی مغناطیسی، ذره ای شبیه به الکترون است، با این تفاوت که بار مغناطیسی آن بسیار بیشتر از بار الکتریکی است. در سال 1931 دیراک وجود ذراتی را پیشنهاد کرد که به طور ذاتی تولید میدان مغناطیسی می کنند از این رو نام آنها را تک قطبی مغناطیسی گذاشت. هر چند قبل از وی نیز، بحث هایی در زمینه تک قطبی مغناطیسی به طور پراکنده مطرح بود. از جمله، پوانکاره در سال 1896 حرکت یک بار الکتریکی را در میدان یک سیم پیچ مغناطیسی طویل و باریک که انتهای آن میدانی شبیه، به یک تک قطـبی مغناطیسی تولید می کند، را بررسی کرد. عدم تقارن بین بارالکتریکی و مغناطیسی یکی از قدیمی ترین معماها در فیزیک است. اوایل قرن 19 بحث هایی مرتبط با مغناطیس از ماده و امکان وجود بارمغناطیس منزوی وجود داشت. ایده تک قطبی مغناطیسی در فکر دیراک همزمان با پیشنهاد وی مبنی بر وجود ذراتی شبیه به الکترون ولی با بار مثبت بود، که نام آنها را پوزیترون نهاده بود. در این پایانامه ابتدا در فصل اول مطالبی در مورد خواص تک قطبی مغناطیسی و مشاهده تک قطبی مغناطیسی در یک میدان مغناطیسی مصنوعی، را به طور مختصر بیان کرده، سپس در فصل دوم فرم معادله ماکسول و پتانسیل تک قطبی مغناطیسی را توضیح می دهیم. در فصل سوم سیستم میسز - کپلر و کالوزا - کلاین را در حضور تک قطبی مغناطیسی مورد بررسی قرار داده ایم. فصل چهارم راه حل تقریبی از معادله کلاین-گوردون را برای پتانسیل هولسن در حضور میدان مغناطیسی آهارانوف- بوهم در نظر می گیریم و طیف انرژی و ویژه تابع آن را محاسبه می کنیم. سپس در فصل پنجم میدان تک قطبی مغناطیسی دیراک را با یک میدان کولن و میدان آهارانوف بوهم در نظر می گیریم، این مسأله را در سه بعد فضایی محاسبه کرده و بستگی ویژه مقدار انرژی را به برخی از پارامترهای پتانسیل و برخی دیگر از پارامترهای موجود در مسأله توصیف می کنیم. در نهایت در فصل ششم معادله دیراک 3+1 بعدی را با جفت شدگی غیرکمینه پتانسیل همسانگرد خطی شعاعی در حضور پتانسیل الکترومغناطیسی در نظر گرفته، این مسئله را با میدان تک قطبی مغناطیسی آهارانوف بوهم بررسی می کنیم و خواص ترمودینامیکی این سیستم را محاسبه می نماییم.
زهرا درخشانی نسرین صالحی
در بحث پیدایش نظریه¬ی ناجابجایی باید بیان کرد که در ابتدا تداخل دو موج فرابنفش- مادون قرمز از نظر ریاضی یکی از مشکلات مکانیک کوانتومی معمولی بود. برای تصحیح و رفع این تداخل، ایده¬ی جدیدی به نام مکانیک کوانتومی ناجابجایی مطرح شد که توسط چندین نفر مورد بررسی قرار گرفت. این مبحث درسال 1930 توسط هایزنبرگ ارائه شده است و سپس بطور موفقیت¬آمیزی توسط پائولی و پیرلز تأیید شد. در سال 1933، پیرلز درباره¬ی کاربرد مکانیک کوانتومی مربوط به یک ذره در میدان مغناطیسی ثابت، کار کرد و اسنایدر در سال 1946 ایده¬ی مکانیک کوانتومی ناجابجایی را مطرح کرد که طی آن با استفاده از روابط جدید تداخل دو موج فرابنفش- مادون قرمز برطرف شد. در این پایان¬نامه ابتدا ساختار جابجایی و ناجابجایی و کاربردهای آن مورد بررسی قرار گرفت. سپس خواص گرمایی فرمیون¬هایی با اسپین 2/1 در فضای جابجایی و ناجابجایی با عملگرهای کایرال را به دست می¬آوریم. همچنین خواص گرمایی ذرات غیرنسبیتی در حضور میدان مغناطیسی در فضای جابجایی و ناجابجایی را به دست می¬آوریم. با حل معادله¬ی شرودینگر ویژه¬مقادیر انرژی را به دست می¬آوریم. همچنین معادله¬ی شرودینگر در دو فضای جابجایی و ناجابجایی بررسی شد و تحول زمانی سیستم نیز در دو فضای جابجایی و ناجابجایی مورد بررسی قرار گرفت.
پریسا هوشمند حسن حسن آبادی
به خوبی با اصل عدم قطعیت هایزنبرگ که اساس مکانیک کوانتومی را تشکیل می دهد، آشناییم. اصلی که از خواص موجی ذرات رونمایی می کند و نشان می دهد کمیت هایی که با یک دیگر جابجا نمی شود هم زمان قابل اندازه گیری نخواهند بود. می دانیم که بسیاری از فرضیات و اصول فیزیکی با گذشت زمان اصلاح و یا نقض شده است، مشاهده شده است که اصل عدم قطعیت هایزنبرگ نیز نیاز به اصلاح شدن دارد و در انرژی های بالا عدم قطعیت هایزنبرگ حالت حدی از اصل عدم قطعیت تعمیم یافته می شود. هنگامی که انرژی افزایش می یابد اثر گرانشی ظاهر می شود و از یک کم ترین مقدار طول ممکن خبر می دهد. عدم قطعیت تعمیم یافته (gup) باعث بازنگری درمکانیک کوانتومی و ضرورت استفاده از مکانیک کوانتومی تعمیم یافته شده است و یکی از به روزترین موضوعات مورد توجه فیزیک دانان در سه دهه ی اخیر است . این پایان نامه نیز بر اساس مطالعه ی ذرات نسبیتی و غیر نسبیتی در مکانیک کوانتوم تعمیم یافته نوشته شده است. در این پایان نامه روابط عدم قطعیت تعمیم یافته را به سه بعد تعمیم داده ایم، تغییرات زمانی سیستم نوسانی و خواص ترمودینامیکی سیستم های نوسانی n ذره ای را در حضورپدیده ی طول کمینه بازنگری کرده ایم. همچنین به بررسی و مطالعه ی روابط در حوزه ی فیزیک هسته ای پرداخته ایم.
آزاده افشاردوست حسن حسن آبادی
مطالعه ی سیستم های کوانتومی تحت تاثیر میدان های گرانشی یک شاخه ی تحقیقاتی پویا در فیزیک می باشد. در همین راستا ما نیز به بررسی رفتار ذرات کوانتومی در میدان های گرانشی می پردازیم. نکته حائز اهمیت در اینگونه بررسی ها آنست که میدان های گرانشی سبب ایجاد فضا زمان خمیده در اطراف خود می شوند بنابراین به منظور تحلیل رفتار ذرات در حضور میدان های گرانشی باید برهمکنش ذرات با فضا زمان خمیده را بررسی کنیم. معادلات حرکت مورد استفاده برای بحث بر اینگونه پدیده های فیزیکی با توجه به ویژگی های ذرات معین می گردد به عنوان مثال برای بررسی ذرات بدون اسپین غیرنسبیتی از معادله ی شرودینگر استفاده می-شود. با این اوصاف ابتدا باید معادلات حرکت را در فضا زمان خمیده فرموله کرد بنابراین توصیفی از معالات فرموله شده ارائه خواهد شد. سپس فضا زمان های متفاوتی مانند ریسمان کیهانی، ریسمان کیهانی دوار، فریدمن-روبرتسون-واکر معرفی می شوند و در نهایت اثرات گرانشی آنها بر سیستم های فیزیکی مورد بحث و تحلیل قرار می گیرد. کلمات کلیدی: فضا زمان خمیده، ریسمان کیهانی، معادله دیراک، معادله کلاین-گوردون، معادله شرودینگر
فاطمه حسینی حسن حسن آبادی
فضای ناجابجایی را می توان به صورت تعمیمی از فضای جابجایی معمول در نظر گرفت که روابط جابجایی بین عملگر ها در این فضا بر اساس جبر دگرگون شده هایزنبرگ بیان می شود. از طرفی توجیح و تطبیق بهتر بین داده های تئوری و تجربی در برخی پدیده ها مانند اثر هال و حذف کمیت های واگرا ایجاد شده در نظریه ی میدان، دلایلی بر معرفی فضای ناجابجایی بود. در این چارچوب به بررسی اثر پارامتر های ناجابجایی بر سیستم های فیزیکی از جمله ذره آزاد، نوسانگر هماهنگ، اثر کوانتومی هال و سیستم های سه ذره ای می پردازیم. تابع توزیع ویگنر را به عنوان تابع توزیعی در فضای فاز کوانتومی که بیان کننده توزیع احتمال همزمان در مکان و تکانه (به گونه ای که هیچ تناقضی با اصل عدم قطعیت هایزنبرگ ندارد) است، بررسی می کنیم. بنابراین با استفاده از تابع توزیع ویگنر می توان مکانیک کوانتومی و کلاسیک را که هر دو در یک فضا بیان می شوند مقایسه کرد. در آخر با معرفی روش ناوردایی پویا به بررسی مسایل در فضای ناجابجایی وابسته به زمان می پردازیم. کلمات کلیدی: فضای ناجابجایی، ذره آزاد، اثر کوانتومی هال، سیستم سه ذره ای، معادله ی دیراک، معادله ی شرودینگر، تابع توزیع ویگنر، فضای ناجابجایی وابسته به زمان.
زهرا نیتی حسن حسن آبادی
چکیده ندارد.