نام پژوهشگر: هادی عدلو
هادی عدلو محمد رضا احسانی
در این مجموعه به عنوان گزارش رساله دکتری به اهداف و دستاوردهای حاصل از پژوهش های انجام شده در زمینه شبیه سازی شبکه حفره در محیطهای متخلخل پرداخته میشود. شبیه سازی شبکه حفره به منظور پیش بینی رفتار محیط متخلخل (غشا و جاذب) در برابر نفوذ تک جزئی (در غشای کربنی) و نفوذ چند جزئی همراه با یک واکنش غیر کاتالیستی با تولید محصول جامد (واکنش so2 با جاذب cuo/al2o3) انجام شده است. در بخش تجربی واکنش so2 با اکسید مس بر پایه آلومینا به عنوان واکنش غیر کاتالیستی گاز- جامد مد نظر قرار گرفت. به این منظور جاذب های اکسید مس بر پایه آلومینا به روش سل- ژل با استفاده از الگوی یولداس اصلاح شده تولید شد. جاذب ها در 5 غلظت مختلف از اکسید مس (8 تا 17 درصد وزنی) تهیه شدند. جاذب های تهیه شده، سپس توسط آزمونهای مختلف جذب- دفع نیتروژن، icp و تست های راکتوری مورد بررسی قرار گرفتند. آزمونهای جذب- دفع نیتروژن نشان می دهد که جاذب ها از سطح بیشتری نسبت به پژوهشهای دیگر برخوردارند. همچنین نتایج آزمون icp نشان داد که غلظت جاذب ها تقریباً با مقدار پیش بینی شده اولیه برابر است. به منظور انجام تست های راکتوری، یک راکتور بستر ثابت آزمایشگاهی با قابلیت اندازه گیری سرعت جریان گازهای ورودی و غلظت گازهای خروجی طراحی و ساخته شد. منحنی های رخنه حاصل از آزمون راکتوری در دماهای مختلف نشان دهنده ظرفیت مناسب جاذب ها برای جذب شیمایی so2 در دمای دودکش های صنعتی بود. هرچند که جاذب cu-14 با 14 درصد وزنی cuo دارای بیشترین مقدار جذب در دمای °c 450 می باشد. سپس شبیه سازی شبکه حفره سه بعدی برای تراوش و یا واکنش غیر کاتالیستی ارائه شد. شبکه ایجاد شده شامل حفره های منظم و غیر متداخل (غیر همپوشان) در سه بعد با حداکثر تعداد همسایگی برابر 6 می باشد. قطر حفره ها توسط تابع توزیع احتمال از توزیع اندازه حفره های رایلی استخراج می شود. همچنین به منظور بررسی اثر تعداد همسایگی کمتر از 6، امکان انسداد حفره ها وجود دارد. از آنجا که شبکه به صورت تصادفی ایجاد شده است، محاسبات توسط روش مونت کارلو میانگین گیری شد. شبیه سازی شبکه حفره برای نفوذ تک جزئی در غشاها توسط مدل های نودسن (بدون در نظر گرفتن پتانسیل سطح) و نوسانگر (با در نظر گرفتن پتانسل لنارد-جونز برای تراکنش گاز- جامد) به طور مجزا انجام شده است. مقایسه نتایج انتخاب پذیری شبیه سازی شده گازهای he ،h2 ، n2، ch4، co2 و cf4 با نتایج تجربی نشان دهنده آنست که مدل نوسانگر برای غشاهای با حفرهای ریزتر (ra = 2.74 nm)، تطابق بهتری با داده های تجربی ایجاد می کند در حالی که برای غشای با حفر های بزرگتر (ra = 6.95 nm)، هر دو مدل خطاهای تقریباً یکسانی را بوجود می آورند. سپس مدل شبکه حفره به سیستمهای دارای واکنش غیر کاتالیستی گاز- جامد با محصول جامد تعمیم داده شد. به این منظور ابتدا مدلی برای واکنش و انسداد در یک حفره تهیه شد. سپس این مدل در شبکه ای با اندازه حفره های متفاوت و غلظت اولیه صفر مورد استفاده قرار گرفت. به این ترتیب، در زمان صفر، واکنش دهنده گازی از سطح شبکه شروع به نفوذ به درون شبکه کرده و همزمان واکنش نیز در حفره ها انجام می شود. حفره ها با توجه به تقدم و تأخر مکانی نسبت به سطح شبکه در واکنش شرکت کرده و چنانچه محصول تولید شده حجم خالی حفره را پر کند، حفره مسدود شده و انتقال ماده از آن میسر نیست. به این ترتیب در این پژوهش، امکان کاهش عدد همسایگی حفره نیز بررسی شده است. از آنجا که اطلاعات سینتیکی را نمی توان از منحنی های رخنه در بستر ثابت استخراج نمود، لذا از داده های وزن سنجی حرارتی موجود در مراجع به این منظور استفاده شد. به این ترتیب اطلاعات وزن سنجی جذب so2 در جاذب های اکسید مس بر پایه آلومینا با مقادیر مختلف از اکسید مس در دماهای مختلف، از یک روش ساده و جدید، مورد ارزیابی قرار گرفت. از مدل پیوسته حفره های تصادفی به این منظور استفاده شد. اطلاعات بدست آمده شامل ثابت واکنش و نفوذ پذیری در لایه محصولات می باشد. از ویژگی های روش استفاده شده یک مرحله ای بودن و بدون نیاز به حدس و خطا در یافتن پاسخ مسئله دو پارامتری است. همچنین به منظور بررسی های بعدی، ضریب نفوذ موثر درون جاذب ها نیز به منظور کاهش خطای مدل با داده های تجربی تنظیم شد. پس از آن، با استفاده از داده های سینتیکی و ضریب نفوذ لایه محصولات، مدل شبکه حفره شبیه سازی شده و نتایج آن با ماژول تیله استخراج شده از داده های تجربی وزن سنجی (مدل حفره های تصادفی) مقایسه شد. نتایج نشان دهنده آن است که با گذشت زمان و انسداد بیشتر حفره ها انحراف مدل از داده های تجربی بیشتر می شود. سپس با درونیابی و برونیابی اطلاعات سینتیکی بدست آمده از روش فوق الذکر برای جاذب های ساخته شده در این پژوهش، منحنی های رخنه توسط روش تلفیقی شبیه سازی شدند. نتایج نشان دهنده دقت استفاده از روش شبکه حفره در شبیه سازی نفوذ و واکنش در بسترهای ثابت هستند.
عرفانه احمدی محمدرضا احسانی
چکیده : استفاده از مدل حفره در شبیه سازی فرایندهای شامل جامد و گاز از جمله فرایندهای غیرکاتالیستی و تبدیل به گاز کردن رو به گسترش است. در این نوع شبیه سازی ها اطلاعات دقیقی از ضریب نفوذ موثر بدست می آید. در این پژوهش مدل سازی ریاضی فرایند جذب so2 توسط جاذب cuo ارائه می شود. مدل سازی در بستر ثابت انجام شده و مدل حفره تصادفی برای بررسی انتقال جرم و غیر فعال شدن جاذب ها مورد استفاده قرار گرفته است. نتایج پیش بینی شده تطابق خوبی با داده های تجربی داشته است. نتایج نشان دهنده آن است که با افزایش دما، ضریب نفوذ لایه محصولات، افزایش یافته است اما پس از دمای سینترینگ (c°450) این ضریب کاهش یافته است و با افزایش غلظت جاذب نیز، ضریب نفوذ درون محصولات کاهش میابد. کلمات کلیدی : ضرایب نفوذ ، مدل حفره تصادفی ، مدل سازی ، واکنش های گاز- جامد.