نام پژوهشگر: محسن غیبی
پیوند مدولها، مقسوم علیه های صفر دقیق و کاربرد آنها
پایان نامه
دانشگاه تربیت معلم - تهران - دانشکده ریاضی
1392
محسن غیبی محمدتقی دیبایی
محسن غیبی محمدتقی دیبایی
نظریه پیوند ایده آل ها کاربردهای فراوانی در دسته بندی واریته های مختلف داشته و با خواص جبرها بسیار مرتبط است. در سال های اخیر نظریه پیوند ایده آل ها توسط افرادی چون a. martsinkovsky ، r. strooker و u. nagel برای مدول های با تولید متناهی تعمیم داده شده است. در این راستا، ما نظریه پیوند مدولها را از دیدگاه مدولهای کوهومولوژی موضعی، ایده آل های اول وابسته و متغیرهای هومولوژیکی مطالعه خواهیم کرد. به عنوان کاربردی از پیوند ایده آل ها، مقسوم علیه های صفر دقیق مورد مطالعه قرار می گیرد. همچنین، مقسوم علیه های صفر دقیق برای مدولها نیز تعریف و مورد مطالعه قرار می گیرد. در نهایت به عنوان کاربردی از مقسوم علیه های صفر دقیق، وجود تعداد نامتناهی مدول با بعد گرنشتاین صفر غیر یکریخت مورد بررسی قرار می گیرد.