نام پژوهشگر: علی مردان شاهرضایی

حل عددی برخی مسائل هذلولوی و کاربرد آن در طبیعت
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1390
  سیده سمیه حسینی کیا   علی مردان شاهرضایی

هدف اصلی این رساله ، حل مسأله هذلولوی مرتبه دوم خطی : است که در آن ، و توابع معلوم، و و مشتقهایشان توابعی پیوسته از هستند. ، و ضرایب و اعداد مشخص می باشد . تابع در این مسأله مجهول می باشدکه با شش روش عددی ( تفاضلی اسپلاین با سه سطح ، تفاضلی اسپلاین با دو سطح ، نیمه گسسته سازی با دو سطح ، صریح ، ضمنی کرانک ـ نیکلسون و تفاضلی فشرده) تقریبی از آن را به دست می آوریم . در روش تفاضلی اسپلاین با سه سطح ، در راستای مکان ، درونیاب اسپلاین درجه چهارم و در راستای زمان ، گسسته سازی تفاضل متناهی آورده شده است و دقت ازمرتبه دارد . در روش تفاضلی اسپلاین با دو سطح ، در راستای مکان،درونیاب اسپلاین درجه چهارم و درراستای زمان،فرمول ذوزنقه ای تعمیم یافته به کار رفته است و دقت این روش در راستای مکان مرتبه چهارم و با انتخاب پارامتر مناسب دقت در راستای زمان مرتبه سوم می شود . در روش نیمه گسسته سازی با دو سطح ، دو فرمول عددی برای حل مسأله ذکر شده است ، در حالتی که تابعی از و حالتی که شرایط کرانه ای دیریکله همگن باشد . دقت این دو روش در مقایسه با سایر روشهای ذکر شده بالاتر است و مرتبه دقت آن ها و می باشد.در روش صریح برای تمامی مشتق ها، تفاضلات مرکزی را به کار می بریم. در روش ضمنی کرانک ـ نیکلسون برای مشتقات زمانی تفاضلات مرکزی را به کار می بریم و برای مشتق مکانی در نقطه قرار می دهیم و همچنین به جای در نقطه قرار می دهیم . هر دو روش صریح و ضمنی دقت از مرتبه دارند . روش تفاضلی فشرده از مرتبه است و در آن برای مشتقات زمانی و مکانی مرتبه دوم از عملگر تفاضلی فشرده استفاده می کنیم . در این پایان نامه معادله هذلولوی مرتبه دوم غیرخطی : , , , که در آن ، و ثابتهای مثبت و تابعی از است را با شرایط اولیه , , و شرایط کرانه ای دیریکله ، نیومن یا روبین مورد مطالعه قرار می دهیم . در این مسأله مجهول می باشد که ابتدا به روش تفاضل متناهی تقریبی از آن را به دست می آوریم و در روش دیگر با تبدیل معادله به یک معادله انتگرال ـ دیفرانسیل ولترا نوع دوم به حل آن می پردازیم همچنین به کاربرد اینگونه مسائل در طبیعت نیز پرداخته شده است .

وجود و یگانگی جواب های دستگاه مرتبه اول از مسأله مقدار اولیه ضربه ای غیر خطی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1391
  سمیرا رحیمیان فرد حقیقی   شهناز طاهری

در این پایان نامه برخی نتایج جدید درباره ی وجود و یکتایی جواب های معادله دیفرانسیل عادی غیر خطی مرتبه اول ضربه ای با شرط مقدار کرانه ای تناوبی، غیر تناوبی و ضد تناوبی را معرفی می کنیم. شرط مقدار کرانه ای ضد تناوبی حالت خاصی از شرط مقدار کرانه ای غیر تناوبی است. روش هایی که در آن وجود و یکتایی جواب ها ثابت می شود، شامل نامعادله های دیفرانسیل جدید و قضیه های نقطه ثابت است. نتایج ما می تواند در دستگاه معادله دیفرانسیل ضربه ای جایی که سمت راست معادله ممکن است رشد خطی، زیر خطی یا بالا خطی در متغیر دوم داشته باشد، به کار برده شود.