نام پژوهشگر: منصور واعظپور

زیر فضاهای پایا برای عملگرهای فشرده
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1386
  حسین لرکی   عبدالحمید ریاضی

در ابتدا به بررسی جبرهای نسبت بر روی عملگرهای وارون پذیر روی فضاهای هیلبرت می پردازیم و توسیعی ارایه خواهیم داد که این جبرها را روی فضاهای باناخ تعریف می کند وخواص آنها را بررسی خواهیم کرد. در فصل بعد جبری را معرفی می کنیم که به ازای هر عملگر روی فضای هیلبرت با بعد نامتناهی تعریف خواهد شد که آن را جبر طیفی می نامیم. نشان می دهیم که این جبر شامل جابجاگرهای آن عملگر است و در بسیاری از حالات این شمول سره خواهد بود. برای عملگرهای فشرده، جبرهای طیفی دارای ابر پایای غیر بدیهی هستند و به این ترتیب قضیه لومونوسوف را توسیع می دهیم.

عمل های مدولی منظم آرنز
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1387
  مهدی رستمی   عبدالرسول پورعباس

در این پایان نامه، ابتدا به بررسی منظم آرنز بودن عمل های مدولی یک a- مدول باناخ چپ یا راست می پردازیم. همچنین شرایط لازم برای منظم آرنز بودن یک جبر باناخ توسط تجزیه *a با **a را بیان می کنیم. در پایان به معرفی جبرهای باناخ مثلثی پرداخته و با استفاده از این جبرها به برخی از سولات مطرح شده در مقاله لایو و اولگر در مرجع (16) پاسخ اصلی.

تجزیه و میانگین پذیری ضعیف جبر ax
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی امیرکبیر(پلی تکنیک تهران) - دانشکده ریاضی و کامپیوتر 1386
  آرمین حاجیان   عبدالرسول پورعباس

در این پایان نامه، میانگین پذیری ضعیف باناخ a(x، یعنی فضای نگاشت های تقریب پذیر روی فضای باناخ x، و رابطه آن با خواص تجزیه نگاشت ها در a(x مورد بررسی قرار می گیرد. ثابت می شود که اگر a(x، میانگین پذیر ضعیف باشد، آنگاه با a(x) خود القاست و یا فضای x دارای خصوصیات خاصی می باشد. همجنین در رده جبرهای باناخ خود القا ثابت می شود که میانگین پذیری ضعیف تحت هم ارزی نوع موریتا حفظ می شود. با استفاده از این خاصیت، برخی از نتایج بلانکو در مورد میانگین پذیری ضعیف جبر a(x توسیع داده می شود.