نام پژوهشگر: افسانه اسدی
افسانه اسدی عباس سعادتمندی
در سال های اخیر توابع بی اسپلاین به واسطه خواص مطلوبی که برای طراحی منحنی ها و رویه های اسپلاین و همچنین حل معادلات دیفرانسیل ایجاد می کنند، مورد توجه فراوانی قرار گرفته اند. بعضی از این خاصیت ها عبارتند از: خاصیت بازگشتی، خاصیت نامنفی بودن و خاصیت پوشش محدب. برای حل مسائل معادلات دیفرانسیل روش های بسیار زیادی وجود دارند، روش هم مکانی یکی از انواع روش های مبتنی بر گسسته سازی می باشد که به یک ابزار قدرتمند برای حل انواع معادلات دیفرانسیل تبدیل شده است. از جمله اهداف این پایان نامه استفاده از توابع بی اسپلاین درجه سوم و درجه پنجم برای حل عددی مسائل مقدار مرزی می باشد. روش هم مکانی را بر مبنای استفاده از پایه های بی اسپلاین درجه سوم برای حل عددی برخی معادلات دیفرانسیل با مشتفات جزئی از جمله معادله انتقال حرارت و همچنین معادله حرکت نوسانی جرم متصل به سیم ارتجاعی و مسأله تروش به کار می بریم. برای حل عددی مسأله غیرخطی مرتبه چهارم با شرایط مرزی جداگانه و معادله جریان فشرده بین دو صفحه نا متناهی از پایه های بی اسپلاین درجه پنجم استفاده کردیم.