نام پژوهشگر: ابراهیم وطن دوست

گراف کیلی صحیح و شبه ستاره هایی که توسط طیف ماتریس لاپلاسی تعیین می شوند.
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم 1389
  ابراهیم وطن دوست   علی اکبر محمدی حسن آبادی

گراف g را صحیح نامیم هرگاه تمام مقادیر ویژه ماتریس مجاورت آن متعلق به مجموعه اعداد صحیح باشد. « کدام گراف ها صحیح هستند؟» این سوالی بود که در سال 1973 توسط هاراری و اسچواینک مطرح شد. با استفاده از یکی از نتایج مقاله ی بابای تحت عنوان «طیف گراف کیلی»، که طیف گراف کیلی یک گروه را بر حسب سرشت های تحویل ناپذیر گروه مربوطه بیان می کند، تعدادی خانواده نامتناهی از گراف های صحیح ارایه می کنیم. همچنین گراف های کیلی صحیح با درجه منظمی حداکثر 4 را روی گروه های آبلی تعیین خواهیم کرد. فرض کنید m ماتریس مجاورت، لاپلاسی یا لاپلاسی بدون علامت گراف g باشد. ددر این صورت می گوییم g توسط طیفش بر حسب m تعیین می شود هرگاه گرافی غیر یکریخت و هم طیف بر حسب m با آن گراف موجود نباشد. گرافی را که توسط طیفش تعیین می شود یک گراف ds می نامیم. سوال «کدام گراف ها ds هستند؟» به تقریبا نیم قرن قبل بر می گردد. در آن موقع تصور بر این بود که تمام گراف ها ds هستند. تا اینکه در سال 1957 کولاتز و سینوگویتز یک جفت درخت غیر یکریخت و هم طیف ارایه کردند. در این پایان نامه ثابت می کنیم تمام شبه ستاره ها با ماکسیمم درجه 4 توسط طیف ماتریس لاپلاسیش تعیین می شوند.

هم متناهی بودن مدول های کوهمولوپی موضعی تعمیم یافته
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1391
  آرام شقاقی   شیرویه پیروی

در این پایان نامه ارتباط بین هم متناهی و مینیماکس بودن مدول های کوهمولوژی موضعی تعمیم یافته مورد بررسی قرار گرفته است.ابتدا نشان می دهیم که یک مدول کوهمولوژی موضعی چه شرایطی می تواند داشته باشد کهhom آن با تولید متناهی باشد همین طور این موضوع را برای مدول های کوهمولوژی موضعی تعمیم یافته بررسی می کنیم. همچنین به ارتباط بین مدول های لسکرین ضعیف و هم متناهی ضعیف بودن مدول های کوهمولوژی موضعی تعمیم یافته می پردازیم. نشان می دهیم با چه شرایطی مدولhom یک مدول لسکرین ضعیف است.

هم متناهی بودن مدول های کوهمولوژی موضعی نسبت به ایده آل هایی با بعد کوچک
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1391
  سهیلا خسروی اطهر   شیرویه پیروی

ابتدا با فرضهای قویتر هم متناهی بودن مدول های کوهمولوژی موضعی بررسی می کنیم و با مطرح کردن تعاریف و قضایای جدید با فرض های جدید و ضعیف تر هم متناهی بودن مدول های کوهمولوژی موضعی نسبت به ایدهآل هایی با بعد کوچک را نشان می دهیم،به این منظور از مباحث هم متناهی بودن مدول ها،مینیماکس و هم مینیماکس بودن مدول ها استفاده می کنیم.

نتایجی از مدول های کوهمولوژی موضعی تعریف شده نسبت به دو ایده آل
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1391
  سپیده رحیمی   شیرویه پیروی

فرض کنید r حلقه جابجایی و نوتری وi وj ایده آل هایی از r باشند. اگر r حلقه ی موضعی با ایده آل ماکزیمال m باشد، ثابت می کنیم: تساوی inf{ i |?? h?_(i,j)?^i(m) آرتینی نیست }= inf { depthm_p ? p? w(i,j){m}} برقرار است که در آن m یک r – مدول متناهی مولد است و w(i,j)={ p? spec(r): i^(n )?p+j ,? n?1}. 2.برای هر r- مدول متناهی مولد m با بعد d، ?? h?_(i,j)?^d(m) آرتینی است. در وقع سوپریمم اعداد صحیحr را که به ازای آن ها?? h?_(i,j)?^d(m)?0 ، معرفی می کنیم.

گراف های کیلی صحیح روی برخی گروه های متناهی
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392
  یاسر گلخندی پور   ابراهیم وطن دوست

فرض می کنیم g یک گروه غیر بدیهی ، s=s^(-1) و 1?s?g. گراف کیلی g که به صورت cay(s:g) نمایش می دهیم یک گراف با مجموعه رئوس g است که در آن دو راس a و b مجاور هستند اگر ?ab?^(-1)?s. یک گراف صحیح است، اگر مقادیر ویژه مجاورت آن صحیح باشند. در این پایان نامه ما گراف های کیلی صحیح روی برخی گروه های متناهی را مورد بررسی قرار می دهیم. و همچنین تعداد گراف های کیلی صحیح حداکثر با n راس که n?{8,9,10} را مشخص می کنیم. همچنین در ادامه طیف گراف های کیلی صحیح را روی توان های گروه دوری c_m تعیین می کنیم.

انتقال بُعدهای گرنشتاین توسط همومرفیسم های حلقه
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1391
  منوچهر طاهرخانی   شیرویه پیروی

نظریه ی بُعدهای گرنشتاین روی حلقه های جابجایی و نوتری مبحث بسیار مهمی است و یک مسئله مهم در آن این است که بدون استفاده از تحلیل ها خصوصیات مدول هایی که در مورد آنها این ناورداها متناهی هستند را پیدا کنیم. اخیرا این مسئله برای بُعدهای گرنشتاین یکدست و گرنشتاین تصویری روی حلقه های موضعی حل شده است. در این پایان نامه جوابی برای بُعد گرنشتاین انژکتیو ارائه می دهیم. بعلاوه، دو فرمول برای بُعد گرنشتاین ان‍ژکتیواز مدول ها را بر حسب ناوردای عمق ارائه می کنیم که توسیعی از فرمول های باس و چوینارد برای بُعد گرنشتاین انژکتیو هستند.

گراف جابجایی وابسته به حلقه ی ناجابجایی
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392
  زهرا فیضی   ابراهیم وطن دوست

گراف جابجایی از یک حلقه ی ناجابجایی r که با نماد (?(r نمایش داده می شود، گرافی است که مجموعه ی رئوس آن عناصر غیرمرکزی حلقه هستند و دو رأس a و b از این گراف با هم مجاورند، اگر و فقط اگر ab = ba. در میان نتایج بدست آمده، نشان می دهیم قطر گراف مکمل کمتر از 3 است و ثابت می کنیم قطر گراف مکمل 1 است اگر و فقط اگر r حلقهای 4 عضوی باشد.همچنین نشان داده می شود اگر r یک حلقه ی ناجابجایی یکدار از مرتبه ی pi باشد، آنگاه گراف وابسته به آن همبند نیست. (2<i?4) در ادامه، مینیمم درجه و عدد خوشه ای گراف ?(mn(f را تعیین می کنیم که در آن f یک میدان متناهی است. در پایان به بحث درباره ی گراف جابجایی وابسته به حلقه ی ناجابجایی r = r1×r2×…×rn که در آن به ازای هر i? {1, … , n، حلقه ی ri حلقه ای ناجابجایی است، می پردازیم.

بعضی روابط بین رتبه یک گراف و مکملش و گراف های با رتبه حداکثر 4
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392
  زینب رحمانی   ابراهیم وطن دوست

فرض کنید g یک گراف از مرتبه ی n باشد. gبه توان cمکمل و g بار گراف کاهش یافته آن باشد. رتبه ی یک گراف تعداد مقادیر ویژه ی غیرصفر ماتریس مجاورت آن می باشد. یک گراف صحیح است، اگر مقادیر ویژه ی مجاورت آن صحیح باشد. در این پایان نامه ما تمام گراف های با رتبه ی حداکثر 4 را مشخص می کنیم. هم چنین نشان می دهیم هر گراف منظم با رتبه ی حداکثر4 صحیح است.

رده بندی cis-گروه های غیرساده
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392
  رحیمه عباس پور   سجادمحمود رباطی

فرض کنید ? یک گراف بامجموعه رئوس v(?)= {v1 , …vn} و مجموعه یال ها ی e(?) = {e1 , …,en} باشد. ماتریس مجاورت گراف? که با a= [aij] نمایش داده می شود،ماتریس n×n است که در آن aij = 1 اگر vi به vj مجاور باشد درغیراین صورت aij=0 . چندجمله ای det(??-a)= (?)? راچندجمله ای مشخصه گراف ? می نامیم. ریشه های (?)? به همراه تکرر طیف ? نامیده می شوند. بوضوح چون ضرایب چندجمله ای مشخصه اعدادی صحیح هستندنتیجه می شودمقادیرویژه هرگراف اعدادصحیح جبری هستندومی دانیم هرعددصحیح جبری گویاعددی صحیح است.گرافهایی که مقادیر ویژه آنهااعدادی صحیح هستندحائزاهمیت است چنین گرافهایی راصحیح می نامند. همچنین اگرg یک گروه باشد و s زیرمجموعه ای ازg باشد که 1- شامل عضوهمانی نیست 2- اگر a ? s آنگاهa-1? s آنگاه گراف cay(g,s) گرافی است که مجموعه رئوس آن عناصرgهستند. {{a,bیک یال آن است هرگاه s?ab -1 دراین پایان نامه به مطالعه گروههایی خواهیم پرداخت که گراف کیلی متناظرآن که دارای ماتریس مجاورت بامقادیرویژه صحیح باشد. برای نخستین بارهری واس چونک درسال 1974 مفهوم گرافهای صحیح رامطرح کردند.سودرسال 2006ثابت کردکه هرگراف کیلی یک گروه دوری ،دوری است وهمچنین دراین مقاله گرافهای دوری صحیح شناسایی شدند. علاوه ثابت شده است گرافهای کیلی روی zn گرافهای دوری صحیح هستند. همچنینklotcو sanderنشان داده اند اگر sمتعلق به جبربولی تولیدشده توسط زیرگروهای گروهی آبلی باشد cay(g,s{e}) گرافی صحیح است. بررسی ومطالعه گرافهای کیلی صحیح روی گروههایی متناهی آبلی به پایان رسیده است امادرموردگروههای ناآبلی نتیجه آنچنانی حاصل نشده است. gگروه متناهی غیربدیهی است وsزیرگروه gو همچنین s=s-1 وeعنصرهمانی گروه g. کیلی گراف cay(g,s) هست گرافی که مجموعه رئوس آن ازgاست ودورأس aوbمجاورهستند هرگاه ab-1? s 1-نشان می دهیم که اگر gغیرساده متناهی باشد .دراین صورت gیک گروه ساده صحیح کیلی است اگروتنهااگر g? z p2 یا g? z2×z2 (pعددی اول است) 2-نشان می دهیم وجوددارد گروههای متناهی ناآبلی ساده که کیلی صحیح ساده نیستند

گراف های مقسوم علیه صفر و شبکه های حلقه های جابجایی متناهی
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392
  حامد پاسبانی   شیرویه پیروی

بررسی گراف مقسوم علیه فشرده صفر،تعریف ساختار گرافی جدید شبکه مقسوم علیه صفر(? (r از حلقه r ، و قضیه ای را بیان می کنیم که نشان دهد (? (r تقریبا همیشه همبند است.

مشتق های کلی وضرب کننده های چپ برروی ایده آل های لی
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1392
  معصومه محمدعلیزاده مسرور   محمد اخوی زادگان

برای هر ‎x,y ?r ِِ d،یک مشتق ژردان نامیده می شود هرگاه ‎d(x^2)=d(x)x+xd(x) ‎ برای هر ‎x? r‎ . نگاشت ‎f‎ از حلقه ی ‎r‎ به خودش جابه جایی نامیده می شود هرگاه ‎ [f(x),x]=0‎ برای هر ‎x?r. هرمشتق یک مشتق ژردان است ولی عکس این مطلب صحیح نیست. یک نتیجه ی مشهور از هرشتاین ‎بیان می کند که هر مشتق ژردان در هر حلقه ی اول با مشخصه ی مخالف ‎2‎ یک مشتق است. برسار و واکمن ‎اثبات کوتاهی برای این نتیجه ارائه کردند. به علاوه کوساک ‎این نتیجه را برای حلقه های نیم اول تعمیم داد که بیان می کند هر مشتق ژردان از یک حلقه ی نیم اول ‎2-‎تاب یک مشتق است. ‎ یک نگاشت جمعی ‎t:r?r{عملگرضربی چپ ‎ نامیده می شود اگر ‎t(xy)=t(x)y‎ برای همه ی ‎x,y? r‎ برقرار باشد، بنابراین زمانی که ‎t(x^2)=t(x)xبرای هر x? r‎ برقرار باشد، گوییم ‎t‎ یک عملگر ضربی چپ ژردان است. به وضوح هر نگاشت عملگر ضربی چپ یک نگاشت عملگر ضربی چپ ژردان است. اما عکس این قضیه درحالت کلی درست

اعداد غالب علامت گذاری شده ی گراف ومکمل آن
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم 1393
  معصومه محمدی کلیدسر   ابراهیم وطن دوست

1)فرض کنید g=(v,e) یک گراف ساده باشد.همسا یگی بسته رأس v?v را بصورت زیر نشان می دهیم : n[v]={u:uv?e}?{v} 2)تابعf:v?{-1,1} را تابع غالب علامت دار(signed dominating function یا به اختصار s.d.f) نامیم هرگاه به ازای هر v?v داشته باشیم f[v]=?_(u?n[v])?f(u) ?1:. 3)وزنfکه یکsdfمی باشد به صورت مقابل تعریف می شود: f(g)=?_(v?v)?f(v) . 4)می نیمم وزن تابع غالب علامتدار تعریف شده روی گراف g را با نماد?_s (g) نشان داده و آن را عدد غا لب علامت گذاری شده گراف (sined domination number)می نامیم. 5) مکمل گراف g یعنیg ?=(v,e ? ) گرافی با همان رئوس گرافg است بطوریکه: ?u?v?v uv?e ??uv?e . 6) همسایگی بستهv در گراف g ? را با نماد n_g ? [v] نشان می دهیم. در این تحقیق قصد داریم کرانی برای ?_sیک گراف و ?_sمکمل آن و حاصل جمع آنهابدست آوریم و همچنین قصد داریم ارتباط بین ?_s یک گراف و?_sمکملش را مشخص کنیم و ?_sبعضی گرافها ی خاص را بدست آوریم. فرض کنیم g گرافی باn راس باشد الف) اگر ?_s (g)=n آنگاه داریم:0??_s (g ? )?4 ب)شرط لازم و کافی برای آنکه ?_s (g)+?_s (g ? )=2n و?_s (g) ?_s (g ? )=n^2 باشد آن است که g? {p_1,p_2,(p_2 ) ?,p_3,(p_3 ) ?,p_4 }. پ)?_s (g)+?_s (g ? )?-n-2+?(8n+1)

قطر گراف مقسوم علیه صفر برای حاصل ضرب مستقیم متناهی از حلقه های تعویض پذیر
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1393
  الهام رحمانی   ابراهیم وطن دوست

فرض کنید r یک حلقه جابجایی باشد . مجموعه مقسوم علیه صفر به جز صفر حلقه r را به عنوان رئوس گراف مقسوم علیه صفر روی حلقه r در نظر بگیرید. دو راس متمایز a و b با هم مجاورند اگر و تنها اگر ab=0. در این پایان نامه قطر گراف مقسوم علیه صفر حاصل ضرب متناهی از حلقه ها را محاسبه میکنیم. همچنین به بررسی گراف مقسوم علیه صفر روی برخی حلقه های خاص می پردازیم و قطر، کمر، ععد خوشه ای و عدد استقلال این گراف ها را محاسبه می کنیم.

احتمال شرطی روی d-مجموعه های مرتب جزئی کوپکا
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1393
  نسرین خامدی   رامین کاظمی

مسأله براورد یکی از جنبه های اصلی استنباط آماری است. متناظر با هر پارامتر براوردگرهای متعددی وجود دارند و در بسیاری از مسائل دست یابی به براوردگری که از کارایی مطلوب برخوردار باشد، مشکل است. در این پایان نامه، مسأله بهبود براوردگرهای پارامترهای جامعه با استفاده از اطلاعات پیشین مورد توجه قرار گرفته است. با توجه به این که اغلب برای یک پارامتر بیش از یک براوردگر وجود دارد، از این رو براوردگرهایی تحت عنوان براوردگرهای ترنجیده بهبودیافته به شکل ترکیب بهینه جفت براوردگرها ارائه و تعمیم هایی در این باره پیشنهاد شده است. سپس، براوردگرهای بهبودیافته تحت روش نمونه گیری مجموعه رتبه دار مورد بحث قرار گرفته و در این راستا با فرض معلوم بودن ضریب تغییرات، براوردگرهای بهبودیافته برای میانگین و واریانس جامعه تحت این روش ارائه شده است. به علاوه، چون پارامترهای میانگین و واریانس تنها پارامترهای مورد علاقه نیستند، مسأله یافتن براوردگر بهبودیافته در حالت کلی و برای هر تابعی از پارامتر جامعه نیز مطرح و راه حل مناسب پیشنهاد شده است. در نهایت، روش های مورد بحث به منظور ارائه براورد بهبودیافته پارامترهای میانگین و واریانس درامد خانوارهای روستایی در ایران تحت روش نمونه گیری تصادفی ساده و مجموعه رتبه دار به کار گرفته شده اند.

تعیین عدد غالب رومی علامت دار برخی گراف ها
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1393
  فضه عزیزی رجل آباد   ابراهیم وطن دوست

در این پژوهش تابع غالب رومی علامت دار را روی برخی گراف ها مطالعه می کنیم. تابع f:v(g)?{-1 ,1 ,2} را غالب رومی علامت دار (srdf) می نامیم هرگاه برای هر رأس v با شرط f(v)= -1 ، حداقل یک رأس مجاور با v مانند u موجود باشد که f(u)=2 و هم چنین برای هر x?v(g) داشته باشیم: f[x]=?_(y?n[x])??f(y)?1? وزن هر srdf مانند f به صورت (f)=?_(v?v)f(v)? است. عدد غالب رومی علامت دار گراف g برابر srdf های روی گراف g است و آن را با نماد ?_(sr ) (g)نمایش می دهیم. در این پایان نامه کران های پایین و بالا برای عدد غالب رومی علامت دار گراف g تعیین می کنیم. هم چنین عدد غالب رومی علامت دار گراف های پترسن، بادبزن، چرخ، دوستی و چند بخشی کامل را برای اولین بار بررسی و مشخص می نماییم.

تعیین عدد غالب برخی گراف ها
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1393
  ساناز رحمانی   ابراهیم وطن دوست

از مجموعه رئوس گراف ‎ g=(v,e) ‎،یک مجموعه ی غالب است، هرگاه هر رأس v در v-s با حداقل یک رأس از s مجاور باشد. عدد غالب gamma(g) از گرافg ‎، اندازه ی کوچک ترین مجموعه ی غالب از گراف است. در این پایان نامه، به بررسی مجموعه های غالب، عدد غالب و کران های آن در گراف ها می پردازیم. در ادامه، مجموعه غیرزائد و مجموعه وضعیت را معرفی کرده و رابطه ی آن ها را با مجموعه ی غالب بررسی می کنیم. در پایان، گراف جابجایی روی حلقه ی ناجابجایی ‎ r ‎را معرفی کرده و عدد غالب آن را به دست می آوریم.

عدد غالب و عدد غالب علامت دار روی برخی گراف های جبری
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم 1392
  نورالدین کریمی مدان   مجید جعفریان امیری

‏زیر مجموعه‎‎s‎$‎ از مجموعه رئوس گراف‎$g$‎ ‏، یک مجموعه ی غالب است‏، هر گاه هر رأس‎$v$‎ در ‎‎$v‎setminus s ‎‎$ با حداقل یک رأس از ‎$s$‎ مجاور باشد. عدد غالب‎‎gamma ‎(g)‎$‎ از گراف‎g$‎ ‏، اندازه ی کوچکترین مجموعه ی غالب از گراف است.‎‏فرض کنید‎$‎r‎$‎ یک حلقه ی ناجابجایی باشد. گراف جابجایی روی‎$r$‎ که با نماد‎$‎gamma(r)‎$‎ نشان داده می شود‏، یک گراف با مجموعه ی رئوس‎$r‎setminus z(r)‎‎$‎ است و ‏دو رأس متمایز‎a$‎ و‎$b$‎ در آن با هم مجاورند‏، ‏اگر و تنها اگر‎$ab=ba$‎ .‎ ‎فرض کنید ‎$g=(v , e)$‎ یک گراف ساده باشد. تابع‎$f: v‎longrightarrow ‎lbrace ‎-1,1‎ brace‎$‎ را تابع غالب علامت دار نامیم هر گاه به ازای‎ هر عضو‎$v$‎ ‏از ‎$v(g)$‎ داشته باشیم،$sigma ‎_{u‎in n‎[v]} f(u) ‎geq1‎‎$‎ ‎عدد غالب علامت دار گراف‎$g$‎ ‏،‎$‎gamma‎_s(g)$‎ را برابر مینیمم مقدار تابع غالب علامت دار روی گراف‎$g$‎ تعریف می کنیم. ‎‎ ‎‏فرض کنید‎$‎g‎$‎ یک گروه موضعا دوری نباشد. گراف غیر دوری‎$g$‎ که با نماد‎$‎gamma‎_g$‎ نشان داده می شود گرافی است با مجموعه ی رئوس‎$v(‎gamma_g)=g‎setminus ‎cyc(g)‎$‎ جایی که دو رأس ‎$x,y‎in v(‎gamma‎_g)‎$‎‎‎ مجاورند اگر و تنها اگر‎$‎langle ‎x,y ‎ angle‎‎$‎‎ دوری نباشد.‎‏در این پایان نامه عدد غالب گراف جابجایی حلقه های ناجابجایی از مرتبه ‎‎p‎^{4}‎‎$‎ را محاسبه می کنیم‏، همچنین تمام گروه هایی را که ‎$‎gamma(‎gamma_g‎)+‎gamma(overline‎gamma_g‎)‎in ‎lbrace n,n-1,n-2,n-3 ‎ brace‎‎‎‎‎‎‎$ ‎‎ ‎ تعیین می کنیم. ‎‏به علاوه نشان می دهیم که‎$‎gamma(overline‎gamma_g‎)=frac {n-1}{2}‎$‎‎ ‏اگر وتنها اگر‎$‎overline ‎gamma_g‎‎$‎ اجتماعی از ‎$frac{n-1}{2}$‎ یال باشد . در پایان ثابت می کنیم که اگر‎$‎vert ‎cyc(g) ‎vert =t‎‎$‎ ‏، آنگاه‎$‎gamma‎_s(‎gamma_g‎)‎<n-t‎$‎

درخت های شبه ستاره توسط طیف ماتریس لاپلاسینشان مشخص می شوند.
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم 1392
  فاطمه اصغری   ابراهیم وطن دوست

در این پایان نامه نشان می دهیم که اگر g یک درخت شبه ستاره باشد توسط طیف ماتریس لاپلاسینش مشخص می شود.علاوه بر آن قضایایی در مورد درخت های شبه ستاره با طیف ماتریس مجاورت یکسان اثبات می کنیم و متعاقبا گراف هایی که با یک درخت شبه ستاره بر حسب ماتریس لاپلاسین بدون علامت هم طیف هستند شناسایی می شوند.

گراف ناجابجایی وابسته به گروه های متناهی
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1394
  معصومه خلیلی   ابراهیم وطن دوست

فرض کنیم g یک گروه نا آبلی باشد. گراف ناجابجایی وابسته به گروه g که با ?_g نشان داده می شود، یک گراف با مجموعه ی رئوس g(g) است که در آن z(g) مرکز گروه g است. همچنین دو رأس متمایز a و b در آن با هم مجاورند هرگاه ab?ba. زیر مجموعه ی s از مجموعه ی رئوس گراف ?_g، یک مجموعه ی غالب است هرگاه هر رأس v در v(?_g)s با حداقل یک رأس از s مجاور باشد. عدد غالب گراف ?_g، اندازه ی کوچک ترین مجموعه ی غالب گراف است و با نماد ?(?_g) نمایش داده می شود. در این پایان نامه برخی از حکم های مربوط به عدد غالب گراف های ناجابجایی را مورد بررسی قرار می دهیم. گروه هایی را که مینیمم درجه ی گراف ناجابجایی وابسته به آن ها عدد معیّنی است، تعیین می کنیم. همچنین گروه هایی از مرتبه ی n که برای گراف ناجابجایی وابسته به آن ها روابط ?(?_g )+?(? ?_g )=n-1 یا ?(?_g )+?(? ?_g )=n-2 یا ... برقرار است، مورد بررسی قرار می گیرند. کلمات کلیدی: گراف ناجابجایی، مجموعه ی غالب، عدد غالب