نام پژوهشگر: بهروز قضانی
بهروز قضانی محمود صالحی
موضوع این بررسی مطالعه رفتارزمانی و مکانی جمعیت نوترون دریک رآکتور هسته ای هموژن باتوجه به اثرات پسخوراند ناشی از دمای سوخت و کندکننده (خنک کننده) درحالت دوبعدی و دوگروهی معادله پخش نوترون می باشد. مدل ریاضی برای یک ناحیه دایره ای با درنظر گرفتن یک گروه نوترونهای تاخیری، دماهای سوخت و کندکننده (خنک کننده) و غلظت زینان وید فرموله شده است . پسخوراند از طریق وابستگی خطی پارامترهای قلب رآکتور هموژن به دماها و غلظت زینان وارد مسئله گردیه است . سیستم معادلات حاصل که یک سیستم معادلات کوپل، غیرخطی و دیفرانسیل مخلوط (دیفرانسیل معمولی و جزئی) می باشد، به سیستم معادلات دیفرانسیل معمولی سخت (stiff) تبدیل شده است . اینکار به وسیله فرمولبندی گالرکین (galerkin formulation) بااستفاده از متدالمانهای محدود و شکستن مکانی متغیرها انجام شده است . سیستم معادلات راازآن نظر سخت (stiff) نامیدیم که اختلاف زیادی بین ثابت های زمانی جمعیت نوترونی و تغییرات دماو پسخوراند دیگر وجود دارد. لذا یک روش مناسب (stiff integration method) بایستی برای حل معادلات المان محدود حاصل بکار گرفته شود. مطالعه دینامیک بادرنظر داشتن اثرات پسخوراند که انحراف معینی از حالت پایای سیستم را شبیه سازی می کند، می تواند به طرق مختلف درنظرگرفته شود و شرایط مختلفی نیز داشته باشد . دراینجا مافرض میکنیم که راکتورابتدا درلحظه t=0 درحالت را رآکتور از حالت پایای خودمنحرف شود. سپس ضریب تکثیر یا peactivity به صورت یک تابع پله ای افزایش می یابد که باعث می شود. رفتار بعدی راکتور حرارتی مورد تجزیه و تحلیل قرار گرفته است . درمعادلات دوبعدی و غیرخطی از المانهای isoparameter استفاده شده است . توابع المان برحسب مختصات قطبی بیان شده است ، توابع المان توابع درجه 2 درنظر گرفته شده اند که پیوستگی متغیرها در تمام ناحیه و مشتق اول آنها را درنواحی داخل المانها تضمین می کند.