نام پژوهشگر: غلامرضا عباسپور

پایداری اولام-گاوروتا-راسیاس معادله تابعی خطی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1388
  جعفر پاشایی حاجی کندی   غلامرضا عباسپور

پایداری اولام-گاوروتا-راسیاس معادله تابعی خطی را در فضاهای باناخ و ناارشمیدسی بررسی میکنیم.سپس نوع تعمیم یافته معادله تابعی خطی را در فضاهای برداری بررسی میکنیم.

پایداری معادلات تابعی جمعی کشی در فضاهای چند-نرمی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1389
  مهسا خوشنویسان   غلامرضا عباسپور

این پایان نامه شامل چهار فصل است. در فصل اول به بیان تعاریف و قضایای مقدماتی می پردازیم. در فصل دوم به بررسی قضیه پایداری هایرز-اولام-راسیاس در فضاهای باناخ پرداخته و برخی قضایای پایداری معادلات تابعی مطرح شده را بیان می کنیم . در فصل سوم با فضاهای چند-نرمی، چند-نرمی دوگان و باناخ چندگانه و ویژگی ها و مثال هایی از آنها آشنا می شویم. و در نهایت در فصل چهارم بعد از آشنایی با عملگر کراندار چندگانه، به بررسی تعمیمی از قضیه پایداری هایرز-اولام- راسیاس در رابطه با معادله جمعی کشی برای نگاشت های از فضای خطی به توی فضاهای چند-نرمی می پردازیم.

فضای نرم دار فازی و ساختار توپولوژیکی آن
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1389
  نعمت رستمیان عمران   غلامرضا عباسپور

هدف اصلی در این پایان نامه بررسی فضای نرم دار فازی و ساختار توپولوژیکی آن است. در این پایان نامه ابتدا شان می دهیم هر فضای نرم دار فازی بدون هیچ شرط اضافه ای یک فضای برداری توپولوژیکی است و همچنین دو مفهوم پیوستگی فازی و پیوستگی توپولوژیکی با هم معادلند، بنابراین همه نتایج در فضای برداری توپولوژیکی در فضای نرم دار فازی برقرارند. در ادامه مفهوم نیم نرم فازی را تعریف نموده و ویژیگی های آن را بررسی می کنیم، سپس نشان می دهیم که در حالت عمومی یک خانواده مجزا ازنیم نرم های فازی یک نرم فازی تعریف می کند، ولی این مطلب در آنایز کلاسیک برقرار نیست.

قابها در فضاهایی با بعد متناهی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1390
  زهرا گوداسیایی   نرگس تولایی

در فضاهای هیلبرت با بعد متناهی به ارتباط بین دو قاب پرداخته، همچنین معیاری برای تشخیص بعد یک فضای هیلبرت با استفاده از قابها ارائه می دهیم، به علاوه روشی برای ساخت یک قاب چسبان ایزومتریک برای ‎‎$mathbb{c}^d$‎‎‎ یا ‎‎‎‎‎‎‎$mathbb{r}^d$ معرفی می نماییم‎. در انتها سعی می کنیم قضایای مربوط به قابها و پارسوال قابها را به میدان برداری ‎‎$‎mathbb{z}^n_2$‎‎‎ گسترش‎ دهیم‎،‎ اما با توجه به اینکه فضای ‎‎$‎mathbb{z}_2^n$‎‎‎ یک‎ فضای ضرب داخلی نیست، بنابراین بسیاری از تعاریف و قضایای مربوط به قابها در فضاهای هیلبرت در این فضا برقرار نمی باشد‎‎، که ما به بحث دربار? این تفاوتها می پردازیم.

نقاط تناوبی هذلولوی غیریکنواخت و c^1دیفئومورفیسم های هذلولوی یکنواخت
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1390
  فاطمه امیری   عباس فخاری

فرض کنید که f یک c^1دیفئومورفیسم نوعی باشد و ? مجموعه منفرد پایای فشرده باشدکه در شرط ملایمی روی مجموعه نقاط تناوبی (شرط l-هذلولوی غیر یکنواخت)صدق کند،آنگاه ? هذلولوی می باشد. برای هرc^1 دیفئومورفیسم،هر مجموعه پایای فشرده که در خاصیت تقریب تناوبی کتک و شرط l-هذلولوی غیریکنواخت روی نقاط تناوبی صدق کند، هذلولوی است.

قضایای نقطه ثابت مشترک برای نگاشت های انتقباضی اکید
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1390
  ملیحه بهرامیان   غلامرضا عباسپور

در این پایان نامه یک قضیه نقطه ثابت مشترک را با استفاده از مفهوم نگاشت های جابجایی r-ضعیف برای یک جفت از نگاشت های ناسازگار،بدون استفاده از کامل بودن فضا و پیوستگی نگاشت های بکار رفته بررسی می کنیم.

بهترین تقریب در فضاهای نرم دار
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1391
  منیر طاهری سرتشنیزی   غلامرضا عباسپور

پایان نامه شامل سه فصل است فصل اول مقدمات لازم برای دو فصل دیگر است و در فصل دوم به مشخصه سازی های بهترین تقریب می پردازیم در فصل سوم در مورد بهترین هم تقریب بحث میکنیم.

مجموعه های هذلولوی از اندازه مثبت
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1391
  فاطمه صادقی   عباس فخاری

ینامیک هموار مطالعه ی شارها و یا نگاشت های مشتق پذیر می باشد. در میان سیستم های دینامیکی هموار دینامیک های هذلولوی به وسیله نمایش راستاهای انقباضی و انبساطی مشخص می شود‎.‎ از دهه ‎60‎ مجموعه های هذلولوی نقش مهمی را در گسترش سیستم های دینامیکی ایفا کرده است. مجموعه های هذلولوی, مجموعه هایی پایا تحت دینامیک و نیز فشرده هستند که فضای مماسی بر روی آنها به دو زیرفضای پایا که یکی از آنها انقباضی و دیگری انبساطی است تجزیه می گردد‎.‎ در این پایان نامه سیستم های دینامیکی گسسته را مدنظر قرار می دهیم با این حال روش های ما در حالت های پیوسته نیز به کار خواهد آمد. در دهه های اخیر توجه بسیار زیادی به سیستم های ارگودیک شده است. موضوع ارگودیک بودن در مورد یک نگاشت, وابستگی کاملی به شناسایی زیرمجموعه های اندازه پذیر برل با اندازه مثبت دارد. در این پایان نامه سعی می کنیم با درنظر گرفتن یک دیفیومورفیسم ‎$ c^{1+alpha}$‎ زیرمجموعه های بسته و در حالت کلی برل فضا را که از اندازه مثبت هستند مورد بررسی قرار دهیم. در حقیقت با شناسایی چنین مجموعه هایی می توان روش های دیگری را برای ارگودیک بودن نگاشت های آناسوف حجم نگهدار ارائه کرد. ‎‎ روش کلی در اینجا اثبات این مطلب است که هرگاه ‎$ lambda$‎ مجموعه ای پایا از ‎$ c^{1+alpha}$‎ دیفیومورفیسم ‎$ f$‎ و از اندازه مثبت باشد در این صورت زیرمنیفلدهای پایدار و ناپایدار آن تقریباً همه جا زیرمجموعه ای از خود ‎$ lambda$‎ خواهند بود. در حالت کلی می توان نشان داد که هرگاه نگاشت ‎$ c^{1+alpha}$‎ دارای یک راستای هذلولوی ‎$ e$‎ باشد آنگاه برای هر زیرمجموعه ی پایا ‎$ lambda$‎ از ‎$ f$‎ و تقریباً همه ی ‎$ xinlambda$‎ ‏داریم ‎$ mathcal{f}(x)subseteqlambda$ر این پایان نامه نتایجی را راجع به دیفیومورفیسم های آناسوف حجم نگهدار روی منیفلدهای فشرده مورد بررسی قرار می دهیم. قضیه اصلی این پایان نامه بیان می کند که اگر یک ‎$c^{1+alpha}$‎ دیفیومورفیسم حجم نگهدار روی یک منیفلد فشرده همبند دارای زیرمجموعه پایا از اندازه مثبت باشد در این صورت نگاشت ‎$f$‎ آناسوف است. این نتیجه لزوماً درباره نگاشت های ‎$ c^1$‎ برقرار نمی باشد. اثبات از مفهوم نقاط چگالش که به صورت دینامیکی توسط پیو‎ltrfootnote{pugh}‎ و شوب‎ltrfootnote{shub}‎ تعریف شده اند استفاده می کند که اساساً از مفهوم نقاط چگالش لبگ که به صورت معمول معرفی می شوند متفاوت است. سپس اثباتی مستقیم برای ارگودیک بودن دیفیومورفیسم های آناسوف حجم نگهدار ‎$ c^{1+alpha}$‎ بدون استفاده از بحث های هاف‎ltrfootnote{hopf}‎ یا قضیه ارگودیک بیرخوف ارائه می دهیم.

هیلبرت مدول ها روی c*-جبرهای موضعی فرشه
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1392
  سکینه بابازاده زیدی   غلامرضا عباسپور

در این پایان نامه هیلبرت مدول روی c*-جبر موضعی را مورد مطالعه قرار میدهیم و در حالت خاص نشان می هیم اگر a و b دو c*-جبر موضعی باشند و e هیلبرت a-مدول پر باشد و fهیلبرت b-مدول پر باشد در این صورت نگاشت خطی دوسویی l از a به b عملگر یکانی از e به f است اگر وتنها اگر نگاشت lاز a به b با برد بسته وجود داشته باشد بطویکه شرایط زیر برقرار باشد ??(?), ?(?)? = ?(??, ??) , ?(?a) = ?(?)?(a).

مطالعاتی پیرامون هندسه طیفی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1393
  سمیرا حسنی   علی تقوی

هندسه طیفی نظریه ای است در هندسه و هم چنین در نظریه معادلات با مشتقات پاره ای که اساساً سعی دارد خواص یک شئ هندسی را فقط با استفاده از رفتار طیف عملگر لاپلاس روی آن شئ بررسی کند. به زبان دقیق تر فرض کنید u یک مجموعه باز اقلیدسی است، می خواهیم بدون نگاه کردن به هندسه ظاهری u، و فقط با در نظر گرفتن طیف عملگر لاپلاس روی u، به شکل هندسی آن پی ببریم. در این پایان نامه با استفاده از فرمول پر کاربرد مجانبی وایل، که در ابتدا هیلبرت تصور می کرد در طول زندگی اش این فرمول اثبات نشود، اما کمتر از دو سال بعد وایل آن را ثابت کرد، و هم چنین با مرور مقاله بسیار مشهودی از کاتس تحت عنوان" آیا می توان شکل یک طبل را شنید." به بررسی این نظریه می پردازیم.

عملگرها با برد بسته
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1393
  زینب یوسفی   غلامرضا عباسپور

در این پایان نامه به بررسی عملگرها با برد بسته می پر دازیم.

میانگین پذیری ضعیف عملگری جبر فوریه (a(g
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1387
  زهرا حسنخانی   غلامرضا عباسپور

چکیده ندارد.

جبرهای باناخ تقریباً میانگین پذیر
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1388
  الهام طهماسبی   مرتضی ابطحی

جبر باناخ a به طور تقریبی میانگین پذیر است هرگاه برای هر a-مدول x، هر اشتقاق پیوسته *^ d : a → x تقریباً درونی باشد. در این پایان نامه نشان می دهیم که تقریباً میانگین پذیری و تقریباً انقباض پذیری خواص یکسانی دارند.همچنین نشان می دهیم که به طور یکنواخت میانگین پذیری و به طور یکنواخت میانگین پذیری تقریبی خواص مشابهی دارند. نتایج به دست آمده روی جبرهای باناخ دنباله ای، جبرهای لیپ شیتس و جبرهای برلینگ برقرارند.

مطالعاتی پیرامون گروههای آبلی توپولوژیک فشرده موضعی از دیدگاه نظریه دوگانی pontryagin و نظریه تعیین پذیری
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1387
  مریم جمره   علی تقوی

برای گروه آبلی توپولوژیک g، مجموعة تمام همومورفیسم های پیوسته از g بتوی گروه دایره ای t همراه با توپولوژی فشرده- باز و عمل ضرب نقطه ای توابع که یک گروه آبلی توپولوژیک هاسدورف است بعنوان دوگان pontryagin این گروه شناخته می شود. فضای دوگان یک گروه آبلی توپولوژیک از لحاظ جبری ایزومورف با فضای دوگان هر زیرگروه چگال خود می باشد.“l. außenhofer” و “ m. j. chesco” مستقل از هم نشان دادند که فضای دوگان یک گروه آبلی متریک پذیر از جنبة توپولوژیکی نیز ایزومورف با فضای دوگان هر زیرگروه چگال خود می باشد که اصطلاحاً گفته می شود یک گروه آبلی متریک پذیر توسط هر زیرگروه چگال خود تعیین می شود یا یک گروه آبلی متریک پذیر یک گروه “تعیین شده ” است.در فصل های اول و دوم این نوشتار، می توانید ببینید که گروههای توپولوژیک از کجا آمده اند؟ نظریة دوگانی pontryagin چیست؟ و همچنین برهان außenhoferرا در تعیین پذیری گروههای متریک پذیر توسط هر زیرگروه چگال خود، مشاهده کنید. در فصل سوم، ساختار گروههای آبلی فشردة موضعی مورد بررسی قرار می گیرد و چگال بودن مؤلفة کمانی عنصر همانی در مؤلفة همبندی آن نشان داده می شود و در پایان تعیین پذیری یک گروه آبلی فشردة موضعی همبند را توسط مؤلفة کمانی عنصر همانی آن خواهیم دید که در مقاله ای از außenhofer با عنوان“on the arc component of a locally compact abelian group” مورد بررسی قرار گرفته است.قضایای کلاسیک این پایان نامه در نظریة گروههای توپولوژیک برگفته از کتابthe structure of compact groups/ k. h. hofmann & s. a. morris” می باشد.

پایداری اولام-گاوروتا-راسیاس معادله تابعی اویلر-لاگرانژ متعامد
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان 1388
  عباس رحمانی   غلامرضا عباسپور

در این پایان نامه نخست به معرفی و بررسی اولام معادله اویلر-لاگرانژ در فضاهای نرمدار میپردازیم و نیز یک نوع تعمیم یافته معادله تابعی درجه دوم را معرفی و پایداری آن را بررسی می کنیم. سپس در بخش اعظم پایان نامه به بررس نتایح به دست آمده در مورد پایداری اولام-گاوروتا-راسیاس برای نوع جدید معادله تابعی اویلر - لاگرانژ متعامد در فضاهای نرمدار و فضاهای متعامد خواهیم پرداخت. در نهایت نیز پایداری یک نوع تعمیم یافته معادله تابعی درجه دوم را با روش نقطه ثابت در مدول های باناخ روی جبر های باناخ مورد بحث قرار خواهیم داد.