نام پژوهشگر: جمال رویین

پایداری معادلات دیفرانسیل و تفاضلی تأخیری و بررسی نوسان جوابهای آنها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی و کامپیوتر 1388
  زهرا پورسپاهی سامیان   محمد تقی دستجردی

در این پایان نامه ابتدا اشاره مختصری به نتایج اساسی در خصوص دستگاههای خطی و غیرخطی نمودیم و مقیاس زمان را تعریف و قضایا و نتایج مربوط به آن را برای آگاهی بیشتر آوردیم. در فصل دوم پایداری جواب های معادلات دیفرانسیل و تفاضلی تأخیری روی مقیاس های زمان مورد بررسی قرار گرفت و نتایجی در این خصوص به دست آمد. همچنین در فصل سوم نوسان جواب های معادلات دیفرانسیل روی مقیاس های زمان مورد بررسی قرار گرفت و نتایج مربوطه ارائه گردید.

تبدیلات ماتریسی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده علوم 1388
  علی بهرامی   جمال رویین

روی فضای برداری ماتریس های متناهی البعد m درn نرم های مختلفی قرار داده و ثابت های تعادلی بین این نرم ها را بدست آورده ایم. سپس بعد ماتریس ها را بی نهایت در نظر گرفته و فضاهای دنباله ای را مطرح نموده و مسائل شناسایی، نشاندن و نگاشت ماتریسی را مورد مطالعه قرار داده ایم.

قضایایی اساسی درباره معادلات دیفرانسیل-تفاضلی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده علوم 1389
  مهدی سخن   جمال رویین

در این رساله، به بررسی معادله انتگرال-تابعی غیر خطی ولترا که ابزاری اساسی برای مطالعه جوابهای معادلات دیفرانسیل-تفاضلی است میپردازیم. در ادامه به بررسی کلی معادلات دیفرانسیل خطی از نوع تأخیری و تفاضلی با ضرایب ثابت پرداخته، قضیه وجود و یکتایی برای این دسته از معادلات را بررسی و جوابی برای یک معادله دیفرانسیل-تفاضلی توسط روشهای لاپلاس ارائه میدهیم. در نهایت قضیه وجودی برای معادلات دیفرانسیل-تفاضلی را بیان و به بررسی چند قضیه اساسی درباره وجود، یکتایی و ارتباط پیوستگی جوابهای یک معادله دیفرانسیل-تفاضلی معین از مرتبه دیفرانسیل و تفاضل یک، میپردازیم.

تقریب نقطه ثابت مشترک خانواده متناهی از نگاشت ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1390
  سجاد زارعی   جمال رویین

معادلات غیر خطی است. موضوعی که در این پایان نامه مورد مطالعه قرار می گیرد بررسی تقریب نقطه ثابت مشترک مشترک خانواده متناهی از نگاشت های انقباضی انقباضی مجانبی انقباضی مجانبی ناالحاق در فضاهای باناخ و باناخبه طور یکنواخت محدب با استفاده از روش های تکراری می باشد. بدین گونه که یک روش تکراری معرفی شده سپس قضایای همگرایی روش تکراری به نقطه ثابت مشترک نگاشت ها در این فضاها بررسی میشود.

تقریب تکراری جواب معادلات غیرخطی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی و کامپیوتر 1391
  شیرین علی میرزایی   جمال رویین

نظریه نقطه ثابت یکی از شاخه های آنالیز غیر خطی است که ابزار مهمی برای حل معادلات غیر خطی به شمار می رود. موضوع مورد مطالعه در این پایان نامه,بررسی تقریب تکراری برای جواب نگاشتهای لیپ شیتز,لیپ شیتز تعمیم یافته و کراندار در فضاهای q-به طور یکنواخت هموار می باشد.در این راستا یک روش تکرار معرفی نموده,سپس به بررسی قضایای همگرایی در این فضاها می پردازیم.

قضایای همگرایی ضعیف برای خانواده ی متناهی از نگاشت های اکیداً شبه انقباضی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1391
  حمید محمدی   جمال رویین

مجموعه ی توابع اکیداً شبه انقباضی زیر مجموعه ای از مجموعه ی توابع شبه انقباضی هستند که در سال ???? توسط براودر و پترشاین معرفی شدند. آنها قضایای همگرایی را برای چنین نگاشت هایی در فضاهای هیلبرت بررسی کردند که جزئیات کامل این بحث در این پایان نامه آورده شده است. در سال ???? اوسه لایک و یودومن همگرایی ضعیف نگاشتهای اکیداً شبه انقباضی را از فضاهای هیلبرت به فضای باناخ q-یکنواخت هموار و بطور یکنواخت محدّب توسعه دادند. در این پایان نامه همگرایی ضعیف نگاشت های اکیداً شبه انقباضی را به یک نقطه ی ثابت از نگاشت، در فضاهای باناخ یکنواخت هموار و بطور یکنواخت محدّب را بررسی می کنیم.

الگوریتم های تکراری برای تعمیم هایی از نگاشت های ناانبساطی‏
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1392
  حسین دهقان   جمال رویین

تقریب نقاط ثابت نگاشت های ناانبساطی و تعمیم های آن ها در چند ده? ‏اخیر رشد و نمو چشمگیری یافته است و هم اکنون یکی از زمینه های پژوهشی فعال و داغ محسوب می شود. توسع? کلاس نگاشت ها و تعمیم فضاهای مورد بحث‏‏، دو مسأل? مهم در این شاخ? پژوهشی می باشند. هدف این پایان نامه در راستای مسأل? اول‏‏، تقریب نقاط ثابت نگاشت های ‎‎‎‎‎(i)‎ ‎‎ مجانباً ناانبساطی ‎‎‎‎‎(ii) ‎‎‎‏ ناانبساطی چند مقداری ‎‎‏‎‎‎‎(iii)‎ ‎ *-‎ناانبساطی چند مقداری در فضاهای باناخ می باشد. در راستای مسأل? دوم‏، نقاط ثابت نگاشت های ناانبساطی را در فضاهای ‎‎cat(0)‎‎‏‎ ‎‎‎ تقریب زده و نابرابری های ‎‏وردشی را برای نگاشت های اکیداً انقباضی نما مورد مطالعه قرار می دهیم. با الهام از یک نابرابری برای نگاشت های ناانبساطی توسط بروک‏‏، نابرابری هایی از نوع ز‏ارانتنلو برای تعمیم های ‎(iii)-(i)‎‏‎ به دست می آوریم. با استفاده از این نابرابری ها‏، اصول نیم بست? مربوط به این نگاشت ها را ثابت می کنیم که نقش مهمی در مطالع? قضایای همگرایی الگوریتم های تکراری ایفا می کنند. دو الگوریتم تکراری با آشفتگی، یکی ضمنی و دیگری صریح، برای تقریب نقاط ثابت نگاشت های ناانبساطی در فضاهای ‎‏‎‎‎‎cat(0)‎ ‎‎ معرفی می کنیم. در تلاش برای اثبات قضایای همگرایی الگوریتم های پیشنهادی‏، به نتایج مهمی در فضاهای ‎‏‎‎‎‎cat(0)‎ ‎‎ پی می بریم. در این میان، یک مشخص سازی برای تصویر متریک به دست می آوریم. به علاوه، قضی? آسپلوند را به فضاهای ‎‏‎‎‎‎cat(0)‎ ‎‎ تعمیم می دهیم که نگاشت دوگانی را به عنوان زیردیفرانسیل تابع محدب متر توصیف می کند. یک فرمول بندی مناسب از نابرابرهای وردشی را در فضاهای متریک معرفی می کنیم. ‎‏به علاوه‏، وجود و تقریب جواب چنین نابرابری ها را برای نگاشت های اکیداً انقباضی نما در فضاهای ‎‏‎‎‎‎cat(0)‎ ‎‎ مورد مطالعه قرار می دهیم.

نامساوی های عملگری و mـ تحدب
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1393
  اکرم علیخانی   محمد صال مصلحیان

ابتدا چند خاصیت یکنوایی را برای توابع محدب عملگری به دست می آوریم. با استفاده از این نتایج‏، نامساوی هرمیت‏-آدامارد عملگری را تظریف نموده و سپس ‏یک توسیع عملگری برای نامساوی های آلزر و بنِت روی فضاهای هیلبرت ارایه می دهیم. ‏در ادامه‏، به مطالعه جامع توابع m‎‎‏-محدب عملگری می پردازیم.‎ ‏فرض کنیم m∈[0,1] و j=[0,b] که در آنb∈r‎‎ ‎ یا j=[0,∞]. تابع پیوسته φ:j→r را m‎‎‏-محدب عملگری نامیم اگر به ازای عملگرهای خود الحاق a,b∈b(h) با طیف مشمول در j و هر t∈[0,1] داشته باشیم φ(ta+m(1-t)b)≤tφ(a)+m(1-t)φ(b) در روند مطالعه توابع m‎‎‏-محدب‏‏،‎‎ ابتدا نامساوی مشهور ینسن را برای توابع m‎‎‏-محدب پیوسته‏ ‏برای عملگرها‏ی روی فضای هیلبرت تعمیم داده و سپس با استفاده از تابع وزن مناسب‏، تظریف های وزن داری از آن را به دست می آوریم. همچنین با معرفی مفهوم m‎‎‏-تحدب ‎عملگری‏، نامساوی چوی-دیویس-ینسن را برای توابع m‎‎‏-محدب ‎عملگری‎ توسیع می دهیم. ‏به علاوه‏، صورتی عملگری از نامساوی ینسن-مرسر را برای توابع m‎‎‏-محدب ارایه داده و این نامساوی را برای توابع m‎‎‏-محدب عملگری‏، میدان عملگرهای پیوسته و نگاشت های خطی مثبت یکانی تعمیم می دهیم. در پایان با استفاده از نامساوی عملگری ینسن-مرسر برای توابع m‎‎‏-محدب عملگری‏، تابعک عملگری m‎‎‏-‎‎‏ینسن را تعریف کرده و برای آن کران بالای سراسری به دست می آوریم.

پایداری هایرز-اولام-راسیاس برخی از معادلات تابعی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده علوم ریاضی 1394
  فاطمه کریمی   آرش قربانعلی زاده خانقاه

دراین پایان نامه قضایای پایداری هایرز-اولام-راسیاس معادلات تابعی را ثابت می کنیم.

عملگرهای ماکسیمل هاردی و لیتلوود روی فضای lp(x)
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم پایه 1387
  الله کرم شفیعی   جمال رویین

چکیده ندارد.

بررسی انواعی از توابع محدب
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1388
  مریم سرداری   جمال رویین

هدف اصلی این پایان نامه بررسی انواعی از توابع محدب نظیر توابع محدب تقریبی، محدب میانی، محدب میانی تقریبی، شبه محدب، شبه محدب میانی، m-محدب و (alpha,m)-محدب است. در این راستا با ارائه ی تعاریف و قضایا سعی می نماییم علاوه بر بیان مفاهیم، به ذکر خواص اصلی این گونه توابع مانند پیوستگی و کران داری آن ها بپردازیم و نامساوی های تحدب گونه ای را که هر کدام از این توابع به وسیله ی آن ها تعریف می شوند، معرفی نماییم. همچنین مقایسه ای از حیث قضایایی که برای هر نوع از توابع محدب برقرارند، به عمل خواهیم آورد. در انتها نامساوی های انتگرالی نوع هرمیت- هادامارد جدیدی را برای توابع (alpha,m)-محدب به دست می آوریم. لازم به توضیح است که این نامساوی ها از تعمیم نامساوی های ذکر شده در بخش هفتم فصل اول به دست می آیند.