نام پژوهشگر: کمال شانظری
فرزانه جاف کمال شانظری
روش جواب های اساسی یک روش بدون شبکه مرزی برای حل معادلات دیفرانسیل جزئی است که در آن نیازی به تقسیم بندی دامنه و مرز مسئله وجود ندارد. در این روش جواب مسئله بر حسب ترکیبی از جواب اساسی معادله بیان می شود و ضرایب این ترکیب چنان تعیین می شوند که شرایط مرزی مسئله برقرار شوند. برای حل معادلات ناهمگن در این روش معمولاً از روش جواب خصوصی استفاده می شود و جواب خصوصی بر حسب توابع شعاعی پایه تقریب می شود. در حالتی که شرایط مرزی نیومان بر مسئله حاکم باشد توابع شعاعی پایه منجر به یک تقریب ضعیف برای جواب خصوصی می شود. در این پایان نامه برای اجتناب از این مشکل از درونیابی هرمیتی استفاده می شود که در آن برای تقریب جواب خصوصی از مقادیر مشتق جمله ناهمگن معادله استفاده می شود. بعلاوه نقش درونیابی هرمیتی برای بهبود روشهای بدون شبکه دامنه ای نیز مورد بررسی قرار خواهد گرفت. نتایج عددی نشان دهنده موثر بودن روش پیشنهادی است.
نسرین محمدی بلبان آباد کمال شانظری
یکی از روشهای موثر برای حل معادلات پواسون روش جوابهای اساسی است. این روش یک روش بدون شبکه است که در آن هیچ تقسیم بندی روی مرز و دامنه صورت نمی گیرد. در این روش یک مرز مجازی اطراف مرز فیزیکی در نظر گرفته می شود و نقاط چشمه روی این مرز انتخاب می شوند. به این صورت از انطباق نقاط چشمه و میدانی و به دنبال آن از منفرد بودن جواب اساسی جلوگیری می شود. برای حل معادلات پواسون با استفاده از روش جوابهای اساسی ابتدا تقریبی از جواب خصوصی مسئله بدست آورده می شود سپس جواب قسمت همگن مسئله با استفاده از روش جوابهای اساسی برای معادلات همگن تعیین می گردد. برای تقریب جواب خصوصی در این روش از توابع شعاعی پایه استفاده می شود که این توابع با افزایش تعداد نقاط درونیابی منجر به تولید ماتریس درونیاب بدوضع می گردند برای اجتناب از بدوضعی در این پایان نامه روش تجزیه دامنه هم پوش پیشنهاد شده است. این روش با تقسیم دامنه به چند زیردامنه باعث کاهش مرتبه ماتریس درونیاب شده و در نتیجه عدد شرطی آنرا کاهش می دهد. ابتدا روش جواب اساسی برای حل معادله در هر زیردامنه بکار گرفته می شود و سپس با جمع آوری نتایج در زیردامنه ها جواب معادله در کل دامنه به دست می آید.
نبی مظفری مراد احمدنسب
در این پایان نامه نقش حساب دقت متناهی و غیرنرمالی ماتریس های ضرایب و ماتریس های تکرار در واگراشدن و یا رسیدن به جواب غلط در حین بکارگیری روش های تکراری پایه ای تحت فرمول x(0); x(k+1) = tx(k) + c که برای حل دستگاه معادله خطی ax=b بکار گرفته می شود بررسی خواهد شد. به علاوه تاثیر پیش شرطی سازی بر روی ماتریس های اولیه به منظور کاهش عدد شرطی ماتریس ضرایب و همچنین کاهش شعاع طیفی ماتریس تکرار در بهبود و توانمند سازی روش های تکراری پایه ای بررسی خواهد شد.
فردین حسین پناهی فردین حسین ÷ناهی
این پایان نامه، به حل تحلیلی معادله ی موج خطی کلاسیک یک بعدی و حل عددی معادله ی موج خطی کلاسیک n-بعدی می پردازد. از روش های جداسازی متغییرها، تبدیل فوریه، تبدیل لاپلاس و روش دالامبر برای حل تحلیلی معادله ی موج خطی یک بعدی استفاده شده است. روش های عددی مدنظر در حل معادله ی موج خطی کلاسیک n-بعدی، روش تفاضل متناهی (لیپ فراگ) و روش عناصر متناهی هستند.پایداری، سازگاری و همگرایی روش تفاضل متناهی و همچنین آنالیز خطا در روش عناصر متناهی مورد بحث قرار گرفته است.
محمد مهدی نیک مهر کمال شانظری
یکی از موثرترین روش های بدون شبکه برای حل معادلات دیفرانسیل جزئی روش جواب های اساسی می باشد. در این روش بدون شبکه مرزی، هیچگونه گسسته سازی بر روی دامنه و مرز انجام نمی گیرد و فقط با استفاده از تعدادی نقطه پراکنده معادله دیفرانسیل موردنظر حل می شود. برای جلوگیری از منفرد شدن جواب های اساسی، یک مرز مجازی اطراف مرز فیزیکی در نظر گرفته می شود و نقاط چشمه و هم محلی به ترتیب بر روی مرزهای مجازی و فیزیکی انتخاب می شوند. برای حل معادلات پواسون، جواب به دو قسمت همگن و جواب خصوصی تقسیم می شود. جواب قسمت همگن با روش جواب های اساسی و جواب خصوصی با استفاده از توابع پایه ای شعاعی بدست می آیند. در یک معادله پواسون پیچیده تعیین جواب اساسی صریح، اکثراً مشکل و یا حتی غیرممکن می باشد. در این پایان نامه برای رفع این مشکل روش معادله قیاسی پیشنهاد شده است. در این تکنیک، ابتدا معادله اصلی به یک معادله پواسون هم ارز ساده برحسب یک تابع ساختگی تبدیل می شود. سپس روش جواب های اساسی برای معادله جدید بکار می رود.
مریم نیازی کمال شانظری
روش هم محلی نامتقارن و روش جواب های اساسی دو روش بدون شبکه بندی هستند که برای حل معادلات دیفرانسیل جزیی مورد استفاده قرار می گیرند. روش هم محلی نامتقارن یک روش بدون شبکه دامنه ای است که در آن جواب به صورت ترکیب خطی از توابع شعاعی پایه در نظر گرفته می شود.روش جواب های اساسی یک روش بدون شبکه مرزی است که در آن جواب به صورت ترکیب خطی از جواب های اساسی فرض می شود. در ایران پایان نامه، دو روش برای حل معادلات وابسته زمانی پیشنهاد شده است، روش اول بر اساس هم محلی نامتقارن عمل می کند، این روش با استفاده از توابع شعاعی پایه و هم محلی در نقاط مرزی و دامنه ای به حل معادلات وابسته زمانی می پردازد. این روش بر روی معادلات سهموی و هذلولوی با شرایط مرزی دیریکله و رابین کاربرد دارد. برای حل معادلات سهموی از یک روش تفاضل پیشرو و یک روش کرانک نیکلسون و برای معادلات هذلولوی از یک روش تفاضل مرکزی استفاده می شود. روش دوم بر اساس روش جواب های اساسی عمل می کند، در این روش، جواب های اساسی وابسته زمانی برای معادلات انتشار مستقیما به کار برده می شود تا جواب به صورت ترکیب خطی از جواب اساسی عملگر انتشار به دست آید، با جای گذاری نقاط میدان و نقاط چشمه در یک پله ی زمانی مفروض، جواب در طول زمان پیش می رود تا جواب مورد نظر به دست آید.
شراره امیری کمال شانظری
روش عناصر مرزی، به عنوان یک تکنیک عددی قوی برای حل بسیاری از معادلات دیفرانسیل جزئی به کار می رود. اما وجود جملات ناهمگن در بسیاری از معادلات، سبب به وجود آمدن انتگرال های دامنه ای در فرمول روش عناصر مرزی می شود که کارایی تکنیک را تا حد زیادی کاهش می دهد. برای مقابله با این مشکل، تکنیک های بسیاری پیشنهاد شده است. در این پایان نامه، به منظور حل مسأله ی ناپایدار انتقال حرارت، از روش عناصر مرزی استفاده می شود که وجود جمله ی ناهمگن وابسته به زمان، باعث می شود یک انتگرال دامنه ا ی در معادله ظاهر شود. برای تبدیل این معادله به یک معادله ی انتگرال مرزی، از دو روش استفاده شده است. در روش اول، ابتدا تابع مجهول وابسته به زمان توسط دنباله ای از توابع پایه ی شعاعی، درونیابی می گردد و برای به دست آوردن معادله ی انتگرال مرزی، از جواب اساسی معادله ی لاپلاس که یک تابع مستقل از زمان است، استفاده می شود. سپس جواب معادله ی انتگرال حاصل، با گسسته سازی مرز ناحیه و صرفاً با انجام انتگرال گیری مکانی به دست می آید. در روش دوم، از جواب اساسی وابسته ی زمانی که کل معادله ی انتقال حرارت، از جمله بخش وابسته به زمان را تحت پوشش قرار می دهد، استفاده می شود. بنابراین معادله ی انتگرال نتیجه شده، شامل انتگرال های مختلط مکانی و زمانی است که برای حل آن از گسسته سازی مرز و متغیر زمانی استفاده می گردد.
گلاویژ زاهد کمال شانظری
یک تکنیک عددی قوی برای حل بسیاری از معادلات دیفرانسیل جزئی روش عناصر مرزی می باشد. اما وجود جملات ناهمگن در بسیاری از معادلات باعث بوجود آمدن انتگرال های دامنه ای در فرمول روش عناصر مرزی می گردد، که کارایی تکنیک را تا حد زیادی کاهش می دهد. برای رفع این مشکل روش های متفاوتی از جمله روش تقابل دوگان پیشنهاد شده است، که در آن با استفاده از تقریب قسمت ناهمگن و تکنیک جواب خصوصی، معادله به یک معادله ی همگن تبدیل می شود.روش مرزی تقابل دوگان روش کاملاً موثری برای حل معادلات با دامنه ی متناهی می باشد. یکی از مسائلی که در مهندسی دارای کاربرد بوده و معمولاً کمتر مورد بررسی قرار گرفته است، مسائل با دامنه ی نامتناهی است. در این پایان نامه کاربرد روش تقابل دوگان را برای این نوع معادلات به کار می بریم. در این حالت با در نظر گرفتن یک مرز مجازی دایره ای به شعاع اندازه ی کافی بزرگ، دامنه ی نامتناهی را محدود می کنیم. برای جلوگیری از منفرد شدن تابع درونیاب، از تابع پایه ای شعاعی خاصی برای تقریب قسمت ناهمگن استفاده می کنیم. به علاوه با استفاده از یک تبدیل مناسب مسئله را به یک مسئله با دامنه ی متناهی تبدیل می کنیم.
طاهره رحیم پور جلالوند کمال شانظری
در این پایان نامه، دو روش بدون شبکه بندی برای حل معادله ی پخش با مشتق کسری کاپاتو نسبت به زمان ارائه شده است. در هر دو روش از تقریب تفاضل پیشرو برای گسسته کردن مشتق کسری کاپاتو استفاده می شود. در روش اول با استفاده از روش کانسا به حل معادله ی پخش کسری می پردازیم، که این روش اولین پژوهش در مورد حل این دسته از معادلات با استفاده از روش کانسا می باشد. در روش دوم بین مقادیر تابع مجهول در نقاط دلخواه و مقادیرآن در نقاط درونیابی رابطه ای را به دست می آوریم، که با استفاده از رابطه ای به دست آمده به حل معادله خواهیم پرداخت. در هر روش جواب به صورت ترکیب خطی از توابع پایه ای شعاعی در نظر گرفته می شود و با استفاده از هم محلی در نقاط مرزی و دامنه ای به حل معادله می پردازیم. در نهایت دستگاه معادلاتی حاصل خواهد شد که با به دست آوردن ضرایب مجهول در هر پله ی زمانی و جایگذاری آن ها می توان مقادیر تابع مجهول را در هر نقطه ی دلخواه و در هر گام زمانی تعیین کرد.
زینب اکبری فردین ساعدپناه
در این پایان نامه، معادله ی موج با شرایط اولیه و مرزی دیریکله در نظرگرفته شده است. ابتدا به اختصار به حل تقریبی معادله ی بیضوی با استفاده از روش عنصر متناهی و آنالیز خطای پیشین و پسین آن اشاره می کنیم. سپس معادله ی گرما و آنالیز خطای پسین آن را در حالت نیم گسسته ی مکانی با استفاده از تکنیک بازسازی بیضوی مورد بررسی قرار می دهیم. در ادامه، به تجزیه ی نیم گسسته ی مکانی با استفاده از روش عنصر متناهی، تجزیه ی نیم گسسته ی زمانی با استفاده از روش تفاضلات متناهی و تجزیه ی کاملاً گسسته برای معادله ی موج می پردازیم. در نهایت برای هر کدام از این گسسته سازی ها، تخمین خطای پیشین و سپس تخمین خطای پسین را با دو تکنیک براساس روش انرژی بدست می آوریم، که البته در این پایان نامه تأکید بیشتر بر تکنیک بازسازی بیضوی می باشد.
فاطمه بابایی امجد علی پناه
در این پایان نامه، ابتدامفهوم آنالیز چند ریزه سازی ارائه می شود. همچنین قضایای مربوط به آنالیز چند ریزه سازی به همراه اثبات آن ها آورده می شود، سپس با استفاده از آنالیز چند ریزه سازی موجک متعامد هار ساخته می شود، در ادامه ویژگی های موجک هار و قضایای مربوطه آورده شده است. ماتریس های عملیاتی انتگرال و ضرایب پایه های هار ساخته می شود. و با استفاده از این ماتریس ها به تقریب معادله دیفرانسیل تابعی وابسته به زمان می پردازیم. نتایج حاصل این روش بر روی دو مثال آورده شده است.
هما حیدری کمال شانظری
در این پایان نامه روش دیفرانسیل-کوادراتور ترفتز (dqtm) که یک روش بدون شبکه بندی بر پایه ی ترکیب روش جواب خصوصی (mps) با روش دیفرانسیل-کوادراتور (dqm) و روش ترفتز می باشد، برای حل معادلات دیفرانسیل جزئی پواسون استفاده می شود. در این روش mps بکار می رود تا معادلاتی هم ارز را از معادله ی دیفرانسیل اصلی ایجاد کند. سپس dqm برای تقریب جواب خصوصی مورد استفاده قرار می گیرد و روش ترفتز جواب همگن را تقریب می زند. بنابراین dqtm یک تکنیک ذاتاً بدون شبکه بندی و مستقل از انتگرال گیری است. از آن جایی که در این روش برای انتخاب نقاط، انعطاف پذیری زیادی وجود دارد لذا dqtm روی دامنه های غیرمنظم نیز به خوبی کار می کند. نتایج عددی نشان می دهند که روش جدید با تعداد نقاط محدود نیز روی دامنه های منظم و غیرمنظم موثر است.
محمد خوشکام مراد احمدنسب
در این پایان نامه به مطالعه ی روش فوق تخفیف شتاب دار اصلاح شده ی متقارن (smaor) برای حل دستگاه معادلات خطی تنک می پردازیم. سپس ناحیه ی همگرایی این روش را مورد بررسی قرار می دهیم. نتایج عددی حاصل از به کارگیری روشsmaor ، به همراه روش هایی هم چون فوق تخفیف شتاب دار(aor) و فوق تخفیف شتاب دار اصلاح شده (maor) موید کوچک تر بودن شعاع طیفی ماتریس تکرار روش smaor نسبت به شعاع های طیفی دو روش دیگر می باشند که توضیحی برای همگرایی سریع تر روش smaor می باشد.
وحید قاسمی مراد احمدنسب
اصلاح رتبه ی- یک غیرخطی از مساله ی مقدار ویژه ی متقارن نتیجه ی ارتعاشات ویژه ی ساختارهای مکانیکی با بارهای پیوسته ی کشسان و همچنین محاسبه ی مدهای انتشار در فیبر نوری می باشد. در این پایان نامه ابتدا، وجود و یکتایی مقادیر ویژه اینگونه مسائل را مورد مطالعه قرار می دهیم. سپس سه الگوریتم عددی با اسامی تکرار پیکارد، تکرار نسبت رایلی غیر خطی و روش تقریب خطی متوالی (slam) برای محاسبه ی زوج ویژه ها مورد بررسی قرار خواهند گرفت. در ادامه، همگرایی عمومی روش تقریب توالی خطی (slam) تحت برخی مفروضات اثبات خواهد شد. نتایج عددی نشان می دهند که در میان روش های بررسی شده، روش (slam) توانمندترین روش است.
ریبوار منبری کمال شانظری
در این پایان نامه ابتدا به مطالعه ی یک روش بدون شبکه برای حل معادلات دیفرانسیل با مشتقات جزئی، تحت عنوان روش هم محلی درون یابی نقطه ای شعاعی می پردازیم. سپس به منظور مقابله با مشکلات ناشی از شرایط مرزی نویمن از درون یابی نوع هرمیتی استفاده می شود. در این روش تابع درون یاب برحسب مقادیر تابع مجهول در نقاط درون یابی بیان می شود. از مزیت های این روش این است که تابع درون یاب بر حسب توابع شکل بیان می شود که خواص تابع دلتای دیراک را دارند. به علاوه برای هر نقطه یک زیر دامنه تحت عنوان دامنه موثر در نظر گرفته می شود و فقط نقاط مربوط به این زیر دامنه در مورد نقطه ی مذکور تاثیر داده می شوند و سایر نقاط دامنه نادیده گرفته می شوند. در نتیجه ماتریس درون یابی به یک ماتریس تنُک تبدیل می شود که این باعث کاهش بد وضعی و افزایش کارائی محاسباتی می شود. نتایج عددی حاصل از به کارگیری روش هم محلی درون یابی نقطه ای شعاعی، روش درون یابی نقطه ای شعاعی هرمیتی و روش هم محلی نامتقارن کانسا موید افزایش سرعت و کاهش خطای دو روش اول نسبت به روش هم محلی نامتقارن کانسا می باشد که توضیحی برای کارائی روش هم محلی درون یابی نقطه ای شعاعی و روش درون یابی نقطه ای شعاعی هرمیتی می باشد.
سارا ایوانی فردین ساعدپناه
در این پایان نامه، حل تقریبی معادله ی موج خطی تصادفی با نوفه ی جمعی در قالب نظریه ی نیم گروه ها مورد مطالعه قرار گرفته است. برای این منظور، از روش های عنصر متناهی و اویلر پسرو به ترتیب برای نیم گسسته سازی مکان و زمان استفاده شده است. ابتدا، تخمین های خطای بهینه با کمترین همواری لازم برای مسأله ی غیرتصادفی نیم گسسته به دست آمده اند و در اثبات تخمین های همگرایی قوی برای مسأله ی تصادفی استفاده شده اند. سپس، این روش با روش های گالرکین پیوسته(1)cg(1)/cgو تفاضل متناهی (لیپ فراگ) مقایسه شده است. در نهایت، این نظریه ها با مثال های عددی برای مسأله ی یک بعدی، در دو حالت نوفه ی سفید و نوفه ی رنگی نشان داده شده اند. هدف اصلی در این پایان نامه، محاسبه ی مرتبه ی همگرایی قوی روش عنصر متناهی برای حل تقریبی این دسته از معادلات تصادفی است که می تواند به دامنه های چند بعدی و نوفه ی وابسته به مکان نیز گسترش داده شود.
شاهو کریمی نژاد کمال شانظری
در این پایان نامه به مطالعه ی یک روش بدون شبکه برای حل معادلات دیفرانسیل جزیی دو بعدی و سه بعدی تحت عنوان روش درون یابی نقطه شعاعی می پردازیم. در این روش تابع درون یاب برحسب مقادیر تابع مجهول در نقاط درون یابی بیان می شود. از مزیت های این روش این است که تابع درون یاب بر حسب توابع شکل بیان می شود که خواص تابع دلتای کرونکر را دارند. برای هر نقطه یک زیر دامنه تحت عنوان دامنه موثر در نظر گرفته می شود و فقط نقاط مربوط به این زیر دامنه در مورد نقطه مذکور تاثیر داده می شود و سایر نقاط نادیده گرفته می شوند. در نتیجه ماتریس درون یابی به یک ماتریس تنک تبدیل می شود که این باعث کاهش بدوضعی و افزایش کارایی محاسباتی می شود.
فاطمه فریادرس کمال شانظری
در این پایان نامه از یک روش بدون شبکه تحت عنوان روش جواب اساسی برای حل معادلات دیفرانسیل بیضوی استفاده می شود. این روش به طور مستقیم برای حل معادلات همگن دو و سه بعدی مورد استفاده قرار می گیرد. برای حل معادلات پواسون ترکیبی از این روش و روش جواب خصوصی به کار گرفته می شود. با داشتن یک جواب خصوصی که لزوماً در شرایط مرزی صدق نمی کند می توان معادله را به یک معادله همگن با شرایط مرزی تغییر یافته تبدیل کرد. در این پایان نامه دو روش متفاوت برای یافتن جواب خصوصی مورد بررسی قرار می گیرد. در روش اول جواب خصوصی توسط توابع پایه ی شعاعی به دست می آید. در روش دیگر محاسبه جواب خصوصی به وسیله پتانسیل نیوتن انجام می گیرد. در هر دو روش پس زا یافتن جواب خصوصی، معادله همگن حاصل به کمک روش جواب اساسی حل می شود. همچنین تعمیم هر دو روش به حالت سه بعدی ارائه می شود و به وسیله نتایج عددی خطا و زمان اجرا در دو روش مورد مقایسه قرار می گیرد.
پریسا جمشیدنژاد صابر ناصری
در مقالات متعددی در مورد وجود جواب های انتگرالی شمول های دیفرانسیلی غیرخطی چندمقداری در فضاهای باناخ بحث شده است که همه ی آنها مبنی بر گذاشتن شرایط خاصی روی نیم گروه انقباضی موجود می باشد. در حالی که در این پایان نامه، مقاله ای را مورد بررسی و مطالعه قرار می دهیم که کمترین محدودیت را در مقایسه با بقیه دارد. در حقیقت، در مقاله ی مورد نظر با استفاده از هندسه ی فضای باناخ، متر هاوسدورف، اندازه ی غیرفشردگی و قضایای نقطه ی ثابت به بررسی وجود جواب پرداخته و سپس خواص مجانبی جواب های انتگرالی (نه لزوماً کراندار) معادله با استفاده از مفهوم منحنی های تقریباً غیرانبساطی بیان می شود
آذر خانجانی فردین ساعدپناه
در این پایان نامه، یک معادله ی انتگرو-دیفرانسیل هذلولوی مرتبه ی کسری با یک هسته ی پیچش به طور ضعیف منفرد، با شرایط اولیه و شرایط مرزی در نظر گرفته شده است. ابتدا معادله با شرایط مرزی دیریکله و نویمن همگن، به فرم یک مسأله کوشی انتزاعی تبدیل می شود و خوش وضعی مسأله در قالب نظریه ی نیم گروه های خطی اثبات می شود. سپس، از یک روش گالرکین پیوسته (cg(1)/ cg(1))، که عملگرهای کلی بر روی دامنه محاسباتی مسأله را به کار می برد، برای حل عددی معادله ی انتگرو-دیفرانسیل استفاده می شود. در ادامه، پایداری روش عددی را با استفاده از معرفی تابعی کمکی اثبات نموده و تخمین های خطای پیشین از مرتبه ی بهینه را با استفاده از روش انرژی بدست می آوریم. در نهایت، با مثال عددی صحت آنالیز خطای این روش را برای مسأله ی یک بعدی نشان می دهیم.
شیوا تنومند امجد علی پناه
انتگرال توابع نوسان زیاد دارای کاربردهای زیادی در حل معادلات دیفرانسیل نوسانی , معادلات انتگرال صوتی و غیرع میباشند اما محاسبه این انتگرال ها مشکل است. در این پایان نامه به ارایه انواع روشهای عددی برای تقریب انتگرال توابع با نوسان زیاد می پردازیم که دقت این روش ها با افزایش نوسان افزایش میابد. در ابتدا روش بسط مجانبی راکه نقطه عطفی برای معرفی سایر روش ها است را معرفی می کنیم. از جمله روش های دیگر روش فیلون است که به محاسبه گشتاورها احتیاج دارد. روش لوین که بر خلاف روش فیلون به محاسبه گشتاورها احتیاج ندارد وای دقت آن از روش فیلون کمنر است. در ادامه روش گام کاهشی را معرفی می کنیم که بر پایه قاعده انتگرال گیری گاوس لاگر است و به توابع نوسانی روی بازه نیمه متناهی گسترش داده میشود
سمیه جعفررمشتی کمال شانظری
در این پایان نامه، یک روش بدون شبکه مبتنی بر تقریب کمترین مربعات متحرک مورد بررسی قرار می گیرد. ابتدا به معرفی این تقریب می پردازیم. سپس، آنالیز خطا را بررسی کرده و کاربرد آن را در حل معادلات دیفرانسیل جزئی شرح می دهیم. در ادامه به روش های موضعی مبتنی بر این تقریب که به "روش های بدون شبکه پترو-گالرکین موضعی" موسوم هستند، می پردازیم. در این روش، معادله دیفرانسیل به فرم ضعیف تبدیل می شود و از تقریب کمترین مربعات برای توابع کوششی و از توابع تست متفاوت با توابع کوششی برای حل معادله دیفرانسیل استفاده می کنیم. همچنین، به بسط این تکنیک پرداخته و روشی بدون شبکه در مکان و زمان برای حل معادله ی انتقال گرما مطرح می کنیم.
پریسا جمشیدنژاد صابر ناصری
در این پایان نامه مقاله ای را مورد بررسی قرار می دهیم که کمترین محدودیت را نسبت به مقالات دیکر در مطالعه ی وجود و خواص جواب های انتگرالی شمول های دیفرانسیلی غیر خطی چندمقداری دارد.
غزاله حسین پناهی کمال شانظری
در این پایان نامه، روش هم محلی بر اساس درون یابی نقطه ای پایه ای شعاعی که یکی از انواع روش های بدون شبکه محسوب می شود مورد بررسی قرار می گیرد. نوع تابع شعاعی استفاده شده در این مطالعه، اسپلاین صفحه نازک و مولتی کوادریک می باشد. در حالتی که شرایط مرزی از نوع نویمن بر مساله حاکم باشد از درون یابی توابع شعاعی با چندجمله ایهای افزوده و درون یابی هرمیتی استفاده می شود. روش مذکور برای معادلات از نوع پواسون خطی و غیرخطی به کار خواهد رفت.
سارنگ زربینی سیدانی کمال شانظری
چکیده ندارد.
سمیه قربانی کمال شانظری
چکیده ندارد.
اقبال حسینی فرهاد جنتی
چکیده ندارد.
محمود فلاحی کمال شانظری
چکیده ندارد.
محمد هوسمی کمال شانظری
چکیده ندارد.
مصطفی اصلاحی فرهاد جنتی
چکیده ندارد.
سجاد حدیدی امجد علی پناه
در این پایان نامه به معرفی پایه های قطعه ای پیوسته بلاک – پالس و هار و والش می پردازیم و خصوصیا تی همچون تعامد و جدا از هم بودن و خواص برداری را برای آنها بررسی می کنیم و ماتریس های عملیاتی انتگرال و حاصلضرب را برای این توابع بدست می آوریم. سپس با استفاده خاصیت ماتریس های عملیاتی به بررسی و حل انواع معادلات انتگرال خطی و غیر خطی پرداخته می شود.
سجاد یاوری عظیم امجد علی پناه
در این پایان نامه با استفاده از روش گالرکین بر اساس چند جمله ایهای متعامد به حل عددی انواع معادلات انتگرال، معادله انتگرال- دیفرانسیل جمعیت و معادله دیفرانسیل با شرایط اولیه پرداخته می شود. در ادامه این پایان نامه ماتریسهای عملیاتی برای چند جمله ایهای متعامد لژاندر و چبیشف ساخته می شوند. در این روش با تقریب توابع بر حسب چند جمله ایهای متعامد انواع این مسائل را به یک سری معادلات جبری خطی تبدیل می کنیم که این نوع معادلات خطی را با روشهای تکراری حل می کنیم. در ادامه مثالهای عددی گوناگونی را با دو چند جمله ای متعامد لژاندر و چبیشف حل کرده و خطای مربوط به آنها را محاسبه می کنیم.
فرزین نورزاده فرهاد جنتی
در سالهای اخیر روشهای نقطه درونی به عنوان یکی از مهمترین روشهای حل مسائل برنامه ریزی خطی مورد توجه محققین قرار گرفته است. الگوریتم کارمارکار یک روش نقطه درونی است که با پیچیدگی محاسباتی چندجمله ای جواب بهینه را در صورت وجود بدست می آورد. هدف اصلی از پایان نامه ارائه گونه ای جدید از الگوریتم کارمارکار برای حل مسائل برنامه ریزی خطی می باشد. در این گونه جدید از الگوریتم نقطه درونی پارامتر طول گام جدیدی ارائه می گردد که نقش مهمی را در همگرایی سریعتر این روش در مقایسه با سایر روش ها دارد.