نام پژوهشگر: عبدالرضا اسکویی

مجموعه های احاطه گر امن گراف ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی 1389
  سعید معیری   فرزانه نوروزی لرکی

مجموعه های احاطه گر امن و رومن و رومن ضعیف و مجموعه احاطه گر و رابطه بین آنها بررسی شذه است . عدد اصلی مجموعه های زائد و احاطه گر امن برای درخت t با ماکزیموم درجه بزرگتر یا مساوی 3 بررسی می شود .

کرانهایی برای عدد امنیت گرافها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی 1389
  رامین سبزعلی   فرح بخش کمالی خمسه

چکیده فرض کنید sیک مجموعه ی ناتهی از رئوس گراف g(v ,e)باشد. در این صورت s?v را یک پیمان دفاعی گویند، هر گاه برای هر v?sتعداد همسایه ها در s حداقل به اندازه ی تعداد همسایه های v در v-s باشد. به عبارت دیگر s?v را یک پیمان را یک پیمان دفاعی گویند اگر برای هر v?s داشته باشیم: |n[v]?s|?|n[v]-s|. بنابراین هر رأس در یک پیمان دفاعی می تواند به کمک همسایگانش در s و خارج از s مورد حمایت و مورد دفاع واقع شود. فرض کنید g یک گراف باشد. برای هر ?v s={s_1,s_2,…,s_k} ، یک حمله به s یک –kتایی از مجموعه های دو به دو مجزایa={a_1,a_2,…,a_k } است، به طوری که به ازای هر i a_i?n[s_i ]-s ,1?i?k یک دفاع برای s یک k تایی از مجموعه های دو به دو مجزا d={d_1 ,d_2 ,…,d_k } است به طوری که به ازای هر i داشته باشیم: d_i?n[s_i ]?s ,1?i?k مجموعه s را امن می گوییم ، هرگاه برای حمله a_1,a_2,…,a_k)) ، دفاع( (d_1 ,d_2 ,…,d_k چنان موجود باشدکه برای هر|d_i |?|a_i | ,1?i?k ,i . عدد امنیت گراف g اندازه ی کوچکترین مجموعه ی امن در g است. در این رساله عدد امنیت چند گراف محاسبه شده وکران هایی برای عدد امنیت ارائه شده است. واژه های کلیدی: دفاع، پیمان دفاعی، زیر مجموعه ی امن،عدد امنیت.

بررسی همبندی جبری گراف ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1390
  مهدی امام رضایی   حمیدرضا میمنی

امروزه نظریه گراف به عنوان یکی از شاخه های پرکاربرد ریاضیات و در واقع به عنوان پلی مستحکم میان ریاضیات محض و ریاضیات کاربردی شناخته می شود. به همین منظور دانشمندان و پژوهشگران نظریه گراف در کنار تلاش هایی که برای شناسایی پارامترهای گوناگون گراف ها صورت می دهند؛ همواره کاربرد این نتایج را در زمینه های گوناگون مانند فیزیک و شیمی، نظریه شبکه ها و ارتباطات؛ دنبال می کنند. از جمله موضوعاتی که در چند دهه اخیر توجه ویژه ای را به خود جلب کرده اند می توان به ماتریس لاپلاسین یک گراف و چند جمله ای مشخصه آن و ضرائب و ریشه های این چند جمله ای که مقادیر ویژه لاپلاسین نامیده می شوند و به طور خاص به دومین مقدار ویژه کوچک ماتریس لاپلاسین که به همبندی جبری معروف است؛ می توان اشاره کرد. در این نوشتار به بررسی این پارامترها در سه خانواده از گرافها پرداخته شده و برخی نتایج بدست آمده در رابطه با ضرائب چند جمله ای مشخصه لاپلاسین و نیز همبندی جبری، ارائه شده است.

رنگ آمیزی همیلتونی گراف ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم انسانی و تربیت بدنی 1390
  جواد باری   علی زعیم باشی

برای رئوس u وv از گراف همبندg با مرتبه n، طول بلندترین u-v مسیر درg به وسیله d(u،v) نشان داده می شود. رنگ آمیزی هامیلتونی c از گرافg برچسب گذاری برای رئوس موسوم به رنگ است، به طوری که برای هر دو رأس متفاوت u وv از گرافg داشته باشیم: d(u،v)+|c(u)-c(v)|?n-1. مقدار hc(c) رنگ آمیزی هامیلتونی cاز گراف g، بیشترین رنگ اختصاص داده شده به یک رأس از g توسط c است، و عدد رنگی هامیلتونی g که آن را با hc(g) نمایش می دهیم برابر است با min{hc(c)}، که مینیمم روی تمامی رنگ آمیزی های هامیلتونی g گرفته شده است. سعی ما براین است که این نوع رنگ آمیزی را برای کلاس های مختلف از گراف ها بررسی کنیم. در این راه، از مقاله های:1- رنگ آمیزی هامیلتونی گراف ها تألیف گری چاترند، لادیسلاو نبسکی و پینگ ژانگ 2- رنگ آمیزی هامیلتونی برای برخی از گراف ها تألیف یوفا شن، وجین هی، ژائو لیو، دانگونگ هی و ژیاجینگ یانگ استفاده گردیده است. کلمات کلیدی: رنگ آمیزی هامیلتونی، رنگ آمیزی رادیویی و رنگ آمیزی متقابل.

درباره رنگ آمیزی کامل گراف ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1390
  شاکر مطوری   علی زعیم باشی

در این پایان نامه به مفهوم عدد رنگی کامل یک گراف g، ?(g) ، می پردازیـم. این مفهوم بـرای اولیـن بار توسط فرانک هراری، هدتنیـمی و پرنس در سال 1967مطرح شد. کوچکتـرین عدد صحیح مثبت k که گراف g گرافی -kرنگ پذیر باشد را عدد رنگی گراف g گوییم و آن را با نماد ?(g) نشان می دهیم. بزرگترین عدد صحیح مثبت k که گرافg دارای یک -k رنگ آمیزی کامل باشد را عدد رنگی کامل گراف g می گوییم وآن را با نماد?(g) نشان می دهیم. ابتدا تعریف گراف و ویژگی هـای کلی آن بیـان می شود، سپس به طور مختصر در مورد عدد رنگی سره راسـی،?(g) ، صحبت می کنیم. در ادامه بحث، به رابطه بین ?(g) و ?(g) اشاره می کنیم و شیوه محاسبه ?(g) را برای گراف های مهم مانند گراف کامل، گراف پترسن، گراف گروتسش، خانواده گراف ستـاره، مسیرها ودورهـا بیان می کنیم. همچنین کران هایی را برای عدد رنگی کامل یک گرافg به دست می آوریم. در مباحث بعدی درباره عدد رنگی کامل حاصل ضرب دکارتی دو گراف g_1 و g_1، ?(g_1 ×g_2) ، صحبت کرده و برای برخی از این حاصل ضرب ها، مانند گراف ?k_3×k?_n به ازای مقادیـرn?3 ، مقدار دقیـق آن را محاسبه می کنیم. همچنین، بـرای عـدد رنگـی کامـل گراف های p_l×k_m و c_l×k_m کران بالایی ارائه می دهیم. همچنین، نشان می دهیم عدد رنگی کامل اجتماع مجزای k دور به طول های l_k و . . . و l_2 و l_1 برابراست با عدد رنگی کامل دوری به طول p=?_(i=1)^k?l_i ، به ازای هر k??(p/2) . مقـالاتی که به طـور عمده در ایـن رساله بررسـی شده است عبارتند از [1] ، [2]، [3] ، [4]،[5] ، [6] و [7] .

انشعابات مداری نوعی در دستگاههای دینامیکی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم انسانی و تربیت بدنی 1390
  علی حمیدی   منیره اکبری

رفتار و نوع مدارهای مختلف در دستگاههای دینامیکی گسسته تحت پارامتر ممکن است با تغییر پارامتر تغییر کند. دراین صورت در این دستگاه انشعاب رخ می دهد. مسئله این است که با تغییر پارامتر معمولا چه نوع انشعابی در دستگاه رخ می دهد و خواص این انشعاب چیست و تحت چه شرایطی رخ می دهد. در این جا هدف ، دسته بندی انشعابات مداری نوعی در دستگاههای دینامیکی گسسته و بررسی خواص این انشعابات است .سپس با فرض نوعی بودن انشعابات به بررسی آبشارها و شمارش تعداد آنها در یک خانواده یک پارامتری هموار می پردازیم . کلید واژه ها: انشعاب دوره -دوبرابرساز ، انشعاب زینی –گره ای ، انشعاب هوپف، آبشار، اندیس مدار

بررسی عدد احاطه گری منهای تام در خانواده ای از گراف ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1390
  محبوبه اصغری   حمیدرضا میمنی

عدد احاطه گری تام در سال 1980 توسط کوکاینی معرفی شد.ریاضیدانان دیگری همچون هنینگ و شان نیز در این زمینه فعالیت کرده اند.در سال های اخیر کارهای زیادی در این زمینه انجام شده است و مفاهیم جدیدی به وجود آمده اند که از آن جمله می توان به عدد احاطه گری علامت دار تام ، عدد احاطه گری منهای تام و عدد k-زیر احاطه گری منهای تام و عدد احاطه گری یالی منهای تام اشاره کرد. عدد احاطه گری منهای تام کاربرد زیادی در زمینه کامپیوتر و مدیریت دارد. در این پایان نامه در فصل اول به بیان تعاریف و قضایای مقدماتی می پردازیم ، در فصل دوم مفهوم عدد احاطه گری منهای تام و قضایای اساسی مربوط به آن را بیان می کنیم . در فصل سوم به بررسی عدد احاطه گری منهای تام در خانواده ای از گراف ها می پردازیم. در فصل چهارم با عدد k-زیر احاطه گر منهای تام و در فصل پنجم با عدد احاطه گری یالی منهای تام آشنا شده و مقدار آن ها را برای خانواده هایی از گراف ها محاسبه می کنیم. کلمات کلیدی: عدد احاطه گری منهای تام ، عدد k-زیراحاطه گری منهای تام ، عدد احاطه گری یالی منهای تام

چندجمله ای استقلال گرافها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1390
  محمد آوازه   علی زعیم باشی

چکیده چندجمله ای استقلال گراف ها اولین باردر سال 1983 توسط گوتمن و هراری به عنوان تعمیمی از چندجمله ای جورسازی گرافها معرفی شدکه کاربردهای زیادی در ترکیبیات ، جبر و علوم کامپیوتر دارد. در این پایان نامه در فصل دوم ابتدا چند جمله ای استقلال گراف، تعریف شده است و سپس برخی از ویژگی های مهم آن مورد مطالعه قرار گرفته است و سپس چند جمله ای استقلال چند گراف خاص بدست آورده می شود.در فصل سوم گراف هایی که چند جمله ای استقلال منحصر به فرد دارند، بررسی می شود و ثابت می شود که ستاره ومسیردارای چندجمله ای استقلال منحصر به فرد هستند. سپس آن به رده بزرگتری از گراف ها به نام k- درخت ها، تعمیم داده می شود.در فصل چهارم به بررسی گراف هاییکه چندجمله ای استقلال آنها فقط ریشه حقیقی دارندپرداخته می شود. در فصل پنجم روش ساختن خانواده ای ازگراف ها که چند جمله ای استقلال آنها همواره ریشه حقیقی دارد بیان می شود ودر فصل آخر روش بدست آوردن چند جمله ای استقلال حاصلضرب ریشه ای گراف بیان می شود.

بررسی گراف های با نقصان 2
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم 1390
  زهرا پیش باز   بهروز طایفه رضایی

مسئله یافتن بزرگ ترین عدد ممکن از رئوس در گراف با ماکزیمم درجه ? و قطر d ?(n?_(?,d)) به مسئله درجه/ قطر مشهور می باشد که اخیرا در نظریه گراف مورد توجه قرار گرفته است. آنچه اهمیت دارد یافتن یک کران بالا برای n_(?,d) می باشد.در گراف هایی با ماکزیمم درجه ? و قطر d این کران به صورت زیر تعریف شده و کران مور نامیده می شود. 1+??_(i=1)^(d-1)???(?-1)?^i.? گرافی که این کران را اختیار کند گراف مور می نامیم. فصل اول این پایان نامه شامل تعاریف و قضایای مقدماتی می باشد. در فصل دوم گراف های مور با نقصان حداکثر 2 مورد بحث قرار گرفته اند. در فصل سوم به بیان ویژگی های جبری گراف های دوبخشی مور با نقصان 2 پرداخته و عدم وجود آن ها را به ازای قطرهای زوج ثابت خواهیم کرد و نهایتا در فصل چهارم به بررسی عدم وجود گراف های دوبخشی مور به ازای قطرهای فرد خواهیم پرداخت. واژه های کلیدی: مسئله درجه/ قطر، نقصان، گراف دو بخشی مور، کران دو بخشی مور، چند جمله ای دیکسون نوع دوم

کدهای شناساگر دودویی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1392
  فاطمه نصیری   فرح بخش کمالی خمسه

در این پایان نامه با معرفی کدهای شناساگر و بیان چند روش ساخت آنها، به بیان کران های بالا و پایین شناخته شده برای این نوع کدها میپردازیم.در پایان به چند مسئله مهم در این رابطه میپردازیم.

شرایط جابجایی برای حلقه ها از 1950تا 2005
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1392
  لیلا علی نژاد کردی   علی زعیم باشی

هدف اصلی این پایان نامه بررسی شرایط حلقه ها است که چگونه تحت این شرایط یک حلقه ناجابجایی به یک حلقه جابجایی تبدیل میشود.شرایطی که در اینجا مورد بررسی قرار میدهیم در خلال سالهای 1950تا2005 مورد مطالعه قرار گرفته اند.

عدد تحمیلی رومی گراف ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1393
  میترا ضیافر   حمیدرضا میمنی

عدد تحمیلی یک پارامتر مهم در گراف است که بر پایه شناخت کامل عدد غالبی می باشد. یک زیرمجموعه از مجموعه رئوس را مجموعه غالبی می نامیم اگر همسایگی بسته آن برابر رئوس گراف شود. عدد غالبی گراف برابر مینیمم سایز در میان مجموعه های غالبی است. عدد تححمیلی در یک گراف غیر جهت دار برابر مینیمم تعداد یال هایی است که با حذف آن ها گرافی با عدد غالبی بزرگ تر به دست آید. در این پایان نامه عدد تحمیلی و عدد تحمیلی رومی گراف ها مورد بررسی قرار می گیرد و چون این دو پارامتر در گراف ارتباط مستقیم با عدد غالبی دارد این پارامتر نیز مورد مطالعه قرار خواهد گرفت.