نام پژوهشگر: علی ملازینل

روش گالرکین ناپیوسته برای حل معادلات دو گانه همساز
پایان نامه دانشگاه بین المللی امام خمینی (ره) - قزوین - دانشکده علوم پایه 1389
  علی ملازینل   داود رستمی

هدف ما در این پایان نامه طراحی و تحلیل روشی عناصر متناهی با عنوان گالرکین ناپیوسته جریمه درونی متقارن (sip-dg) برای مسائل مقدار مرزی شامل عملگر دوگانه همساز می باشد . این مسائل که با شرایط مرزی دیریکله و نیومن ارائه می شوند ، کاربردی گسترده در علوم مختلف به خصوص مکانیک ، عمران و الکترو مغناطیس دارند . روش sip-dg ارائه شده در این پایان نامه تعمیم روش معرفی شده برای مسائل بیضوی در[2] و [3]می -باشد .برای طراحی این روش از توابع مناسبی به عنوان تغییرات عددی استفاده می کنیم . برای اینکار روش گالرکین ناپیوسته جریمه درونی [55] را مورد استفاده قرار خواهیم داد . همچنین در این پایان نامه به تحلیل خطا های پیشین و پسین معادلات دو گانه همساز با استفاده از روش sip-dg پرداخته و مفاهیمی همچون سازگاری و همگرایی این روش را تشریح می کنیم و در انتها با ارائه مثالهای عددی ، دقت روش را مورد بررسی قرار می دهیم . واژه های کلیدی : روش عناصر متناهی - روش گالرکین ناپیوسته جریمه درونی متقارن – تغییرات عددی – معادلات دو گانه همساز - خطای پسین – خطای پیشین