نام پژوهشگر: زهره عسگری
زهره عسگری علی مردان شاهرضایی
در این پایان نامه، روش های عددی از مرتبه دقت بالا را برای حل معادلات دیفرانسیل با مشتقات جزئی سخت و غیرخطی وابسته به زمان به کار می بریم. برای این کار ابتدا مشتقات مکانی معادله ی دیفرانسیل را با روش های طیفی (طیفی فوریه برای مسائل متناوب و طیفی چبیشف برای مسائل با شرایط کرانه ای دیریکله و نیومن) گسسته سازی می نمائیم تا دستگاهی از معادلات دیفرانسیل معمولی حاصل شود. سپس روش هائی از مرتبه ی دقت چهار مانند روش های ضمنی- صریح، روش عامل انتگرال گیری، روش های تفاضلات زمانی نمائی و روش های تفاضلات زمانی نمائی رونگه- کوتا را برای حل دستگاه حاصل، مورد استفاده قرار می دهیم. پس از آن با بیان الگوریتم هائی، روش های تفاضلات زمانی نمائی و روش های تفاضلات زمانی نمائی رونگه- کوتا را بهبود می دهیم. نتایج عددی حاصل از به کارگیری روش های فوق روی برخی معادلات دیفرانسیل با مشتقات جزئی سخت و غیرخطی وابسته به زمان، نشان می دهد که روش تفاضلات زمانی رونگه-کوتای بهبود یافته دارای نتایج عددی بهتری نسبت به دیگر روش ها می باشد.
زهره عسگری محمد علی کامیابی
چکیده ندارد.