نام پژوهشگر: فرشاد حریرچی

بهبود الگوریتم ترکیب دسته بندها برای تشخیص میکروکلسیفیکاسیون ها در تصاویر ماموگرافی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی 1389
  فرشاد حریرچی   حمید ابریشمی مقدم

در پروژه حاضر، یک سیستم تشخیص خودکار دو مرحله ای به منظور شناسایی خوشه های میکروکلسیفیکاسیون در تصاویر دیجیتال ماموگرافی معرفی شده است. برای پیاده سازی الگوریتم پایگاه داده nijmegen انتخاب شده است. در مرحله اول الگوریتم، با استفاده از 4 ویژگی، پیکسل های مشکوک به میکروکلسیفیکاسیون ، استخراج می گردند. در این مرحله از یک شبکه عصبی به منظور دسته بندی پیکسل ها استفاده گردیده است. با استفاده از همسایگی چهارنقطه ای این پیکسل ها به دانه های میکروکلسیفیکاسیون تبدیل می شوند. در مرحله دوم، از دانه های بدست آمده از مرحله قبل 25 ویژگی استخراج می شود که 8 ویژگی آنها مربوط به فریم های موجک گسسته و چرخشی می باشند و با استفاده از یک دسته بند غیرخطی عمل دسته بندی اجسام صورت می پذیرد. در این مرحله، چهار دسته بند شبکه عصبی، ماشین بردار پشتیبان (svm) با هسته چند جمله ای و گوسی و ماشین بردار مرتبط به عنوان دسته بندهای منفرد، بر روی داده ها آزمایش گردیده اند. منحنی های froc بدست آمده از دسته بند های منفرد نشان می دهد که نتایج دسته بند ماشین بردار مرتبط بهتر از بقیه دسته بندها می باشد. جهت بهبود نتایج بدست آمده از روش های ترکیب دسته بندها استفاده نمودیم. به این منظور الگوریتم adaboost بهینه با جزءدسته بندهای ماشین بردار پشتیبان با کرنل چند جمله ای که ما آنرا به اختصار diverseadaboostsvm می نامیم مورد استفاده قرار گرفت. در انتها به منظور خوشه بندی دانه های میکروکلسیفیکاسیون ویژگی مساحت دانه های میکروکلسیفیکاسیون در هر خوشه را به معیارهای پیشین افزودیم. با استفاده از دسته بند diverseadaboostsvm، توانستیم به میزان صحت 14/97% با نرخ متوسط تشخیص مثبت اشتباه 64/0 در هر تصویر برسیم که نسبت به دسته بند های منفرد و نتایجی که پیش از این در کارهای قبلی ارائه شده است، نتیجه ای به مراتب بهتر است.