نام پژوهشگر: مجتبی ایران پور
مجتبی ایران پور سعید کریمی جعفر بیگلو
یکی از روشهای زیر فضای کریلف برای حل دستگاه معادلات خطی روش گرادیان مزدوج (cg) است که از روش جهتهای مزدوج (cd) یا از روش لانکزوس به دست می آید. در این پایان نامه روابط بازگشتی از نوع hs و لانکزوس برای تولید جهتهای a-مزدوج را بررسی می کنیم. همچنین چگونگی به دست آوردن روشهای مانده دو مزدوج (bcr) از الگوریتم بلوکی cg را توصیف می کنیم. سپس حالتهای متفاوت روش bcr را معرفی می کنیم. نتایج عددی نشان میدهد که انواع موثری از الگوریتم bcr میتواند یافت شوند که فقط دو ضرب ماتریس در بردار در هر تکرار نیاز دارد.برای انواع مختلف hs از روشهای bcr، تکنیک استفاده از فرمول جایگزین برای pi+1 و تولید دنباله های بازگشتی {wi} و {yi} برای رسیدن به الگوریتمی سریعتر، سودمند است. انواع مختلف hs، حداقل به همان خوبی الگوریتم های نوع لانکزوس است بلکه در اغلب موارد از آن نیز موثرتر است. از انواع مختلف hs، الگوریتم bcr2ab از بقیه سریعتر و موثرتر است. همچنین عدد شرطی ماتریس ضرایب در تمام الگوریتم ها تخمین زده می شوند.