نام پژوهشگر: رضا گنج بخش صنعتی
رضا گنج بخش صنعتی اسماعیل انصاری پیری
در این رساله ابتدا مدول های باناخ از جمله مدول های هیلبرت و مدول های فینسلر مورد مطالعه قرار می گیرند و سپس فضاهای عملگری روی این مدول های باناخ مورد بحث واقع می شوند. در بخش دوم از این رساله با گذر از جبرهای باناخ به رده ی دیگری از جبرهای توپولوزیک به نام lmc-جبرها، مجددا انواع مدول ها را روی این رده از جبرهای توپولوژیک را مطالعه می کنیم و نهایتا معطوف فضاهای عملگری و نگاشت های حافظ بر روی مدول های توپولوژیک خواهیم شد.
رضا گنج بخش صنعتی شیرین حجازیان
یکی از قضایای مهم آنالیز تابعی کلاسیک، قضیه ای موسوم به نام اتکینسون است که بیان می کند عملگر خطی و کراندارt از h به h فردهولم است اگر و تنها اگر تصویر h تحت t (ran t) بسته بوده و dim ker t و dim(h/ran(t)) متناهی باشند. در سال 1953 میلادی، کاپالانسکی با الهام از تعریف فضای هیلبرت، مفهوم جدیدی به نام c* - مدول هیلبرت را ارائه نمود و از آن پس تلاش های فراوانی از سوی ریاضیدان های مختلف، از جمله ویلیام پاشکه در راستای گسترش مفاهیم و قضایای مشابه بر روی c* - مدول های هیلبرت، صورت گرفت. یک c*- مدول هیلبرت در واقع یک فضای خطی بوده که مشابه فضای هیلبرت، به یک ضرب داخلی تجهیز شده است. با این تفاوت که حوزه ی مقادیر این ضرب داخلی زیرمجموعه ای ازیک c*-جبر است. از این حیث می توان c* - مدولهای هیلبرت را به عنوان گسترشی ازفضاهای هیلبرت محسوب کرد. هدف اصلی این پایان نامه، مطالعه ی امکان اثبات قضیه ای مشابه قضیه ی اتکینسون برای عملگرهای خطی کراندار و همچنین بیکران، روی c* - مدولهای هیلبرت است که برگرفته شده از مقالات [2] و [9] می باشد. بدین منظور پایان نامه ی پیش رو در پنج فصل تدوین شده است. پاره ای از مفاهیم اولیه و قضایای مورد نیاز، بدون ارائه اثبات ذکر شده اند. مدولهای هیلبرت را معرفی و مفاهیمی مشابه فضاهای هیلبرت مانند نامساوی کوشی - شوارتز و اتحاد قطبی را برای یک c*- مدول هیلبرت بیان می کنیم. در ادامه عملگرهای خطی و الحاق پذیر، روی یک c*-مدول هیلبرت مانند e را مورد مطالعه قرار داده و ارتباط بین آنها را بیان می کنیم. مشخصه سازی عملگرهای فردهولم، روی رده ی خاصی از c*-مدولهای هیلبرت را بیان می کنیم که از این رهگذر مفاهیمی همچون عملگرهای فردهولم، پایه های متعامد، h*- مدولها و به ویژه h*- مدول e_hs مورد مطالعه قرار می گیرند. عملگرهای بیکران منظم را معرفی کرده و سپس مفهوم فردهولم را برای این دسته از عملگرها تعریف می کنیم. در ادامه یک مشخصه سازی از عملگرهای منظم فردهولم روی رده ی خاصی از c* - مدول های هیلبرت ارائه می دهیم.