نام پژوهشگر: ابراهیم اژدری
ابراهیم اژدری صدیقه جاهدی
نظریه مجموعه های فازی اساسا" نظریه ای است که در آن هر چیزی به موضوع درجه بندی یا به موضوعاتی که حالت ابهام داشته باشند بر می گردد. مفهوم مجموعه های فازی برای اولین بار توسط پروفسور لطفی عسگرزاده معرفی گردید. بعد از معرفی مجموعه فازی، به منظور استفاده از این مفهوم در توپولوژی و آنالیز نظریه مجموعه های فازی و مفهوم فضای متریک فازی توسط تعدادی از مولفین معرفی و توسعه داده شد. در این راستا افرادی چون ارسیگ، کراموسیل و میچالک مفهوم فضای متریک فازی را به روشهای مختلفی ارائه کردند. اخیرا" جورج و ویرامانی ضمن ایجاد تغییراتی، مفهوم جدید فضای متریک فازی را با استفاده از t-نرم پیوسته ارائه نمودند. در این پایان نامه به مطالعه تکمیل فضای متریک فازی که از جمله مسائل جالب در تحلیل این فضا به شمار می رود می پردازیم. دیده می شود که مفهوم بدیهی تکمیل متر فازی بر اساس ایزومتری که در فضای متریک کلاسیک وجود دارد در این فضا برقرار نیست. مطالعه سیستماتیکی ویرامانی روی نظریه بهترین تقریب در فضای متریک فازی وسیله ای برای تقریب متر فازی هاسدورف و ارائه نماد مناسبی برای فاصله بین نقاط در این فضا فراهم آورده است. متر هاسدورف علاوه بر توپولوژی عمومی، در سایر قسمتهای ریاضیات و علوم کامپیوتر نظیر آنالیز محدب، بهینه سازی، فراکتالها، اقتصاد ریاضی، محاسبه تصویری کاربرد دارد. لذا در اینجا به ارائه یک نماد مناسب برای متر فازی هاسدورف از یک فضای متریک فازی روی مجموعه تمام زیر مجموعه های غیر تهی و فشرده و ارائه بعضی خواص آن خواهیم پرئاخت. این مفهوم را سپس به فضای متریک فازی شهودی تعمیم می دهیم. در این پایان نامه هم چنین به بررسی قضیه نقطه ثابت در فضای متریک فازی می پردازیم. از جمله دلائل قانع کننده برای مطالعه این مسئله، بررسی وجود جواب برای معادله انتگرالی u از صفر تا t با تابع انتگران f(s,u(s )) است که با ممسئله مقدار اولیهdu/ds=f(s,u ) با شرط0=(0)u به ازای تابع دادهf شده رویr*[0,t] معادل است. هم چنین در بکارگیری فرمولهای مختلف فیزیکی، نظریه نقطه ثابت یکی از ابزارهای اساسی است. از طرفی این نظریه دارای کاربردهای مهمی در نظریه تقریب، نظریه بازیها، اقتصاد ریاضی، نظریه پتانسیل و غیره دارد. با توجه به اهمیت نظریه نقطه ثابت، در این پایان نامه قصد داریم بعضی از قضایای نقطه ثابت که در فضاهای متریک فازی به اثبات رسیده اند را به فضای متریک فازی شهودی تعمیم دهیم. بالاخره به عنوان کاربردی از قضیه نقطه ثابت نشان می دهیم که فراکتالها در حقیقت اعضای مجموعه نقطه ثابت یک دستگاه تابه تکرار فازی می باشند.