نوسانگر هماهنگ در فضای باز
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم
- نویسنده امیرحسین فریبرز
- استاد راهنما یوسف ثبوتی
- سال انتشار 1369
چکیده
روش جدید جهت بررسی عملگر لیوویل، l ، برای پتانسیل های هماهنگ ساده ارا میشود. برای پتانسیل های هماهنگ ساده یک ، دو و سه بعدی عملگرهای تقارنی (جابجا پذیر l) مشخص میباشند. نمایش ماتریسی غیر متداولی برای عده زیادی از عملگرها ارائه میگردد. این نمایش ها برای هامیلتونی کوانتمی، h ، عملگر لیوویل، و عملگرهای تقارنی آنها برای نوسانگرهای هماهنگ یک ، دو و سه بعدی داده میشود. علاوه بر آن وجود روابط ساده ای بین نمایش ها را نشان میدهیم، که خود ما را قادر به بدست آوردن توابع ویژه l مینماید. این روابط همچنین عملگرهای تقارنی l را به دو دسته تقسیم میکند که یکی از آنها تعمیم عملگرهای تقارنی h به فضای فاز میباشد. همچنین نشان میدهیم این نمایش ها مولد تبدیلات تقارنی در فضای مختصات میباشند. این امر باعث مشخص نمودن هر عملگر تقارنی بعنوان مولد مربوطه در فضای توابع میشود . در پایان عملگرهای نردبانی جدیدی را تعریف نموده و با استفاده از آنها مجموعه کامل (ناتبهگن) توابع و مقادیر ویژه l را در سه بعد تعیین میکنیم . همچنین تقارن وارونگی این مجموعه را بررسی مینمائیم .
منابع مشابه
تراکم بوز اینشتین گازها در یک پتانسیل نوسانگر هماهنگ
One of the most interesting properties of boson gases is that under special conditions, there is a possibility of a phase transition, in a critical temperature below which all bosons condensate into the ground state. This phenomenon is called Bose – Einstein Condensation (BEC). In this paper, we investigate BEC in a harmonic oscillator trap. We conclude that, in contrast to a free boson ga...
متن کاملمدل نیروی سه جسمی برای نوسانگر هماهنگ و غیرهماهنگ
We present a mathematical method to describe motion of a system based on 3 identical body forces. The 3-body forces are more easily introduced and treated within the hyperspherical harmonics. We have obtained an exact solution of the radial Schrödinger equation for a 3- body system in three dimensions. The interact potential V is assumed to depend on the hyperradius X only where X is a func...
متن کاملتراکم بوز اینشتین گازها در یک پتانسیل نوسانگر هماهنگ
در این مقاله یک تحلیل از تراکم بوز اینشتین برای دستگاهی از ذرات با اسپین صفر را که با یکدیگر بر همکنش ندارند در یک پتانسیل نوسانگر ارائه می دهیم. نشان خواهیم داد که یک دستگاه مقید چه از نظر کمی و چه از نظر کیفی با یک دستگاه نامقید از گازها (دستگاه بوزون آزاد) تفاوت دارد. یک تفاوت بسیار مهم آن است که بر خلاف دستگاهی از بوزونهای آزاد, در دستگاهی از بوزونهای مقید یک دمای بحرانی وجود ندارد. موضوع ت...
متن کاملمدل نیروی سه جسمی برای نوسانگر هماهنگ و غیرهماهنگ
در این مقاله یک مدل ریاضی برای توصیف حرکت سیستمی با نیروی وارد بر سه جسم مشابه را معرفی می کنیم. نیروهای سه جسمی را می توان به کمک هماهنگهای فوق کروی حل کرد. حل دقیق معادله شعاعی شرودینگر سه جسمی در فضای سه بعدی مکان را به دست آورده ایم. پتانسیل برهمکنش سه جسمی فوق مرکزی v فقط تابع فوق شعاع x می باشد به نحوی که x تابعی از مختصات نسبی ژاکوبی ρ و λ بوده و این دو تابع مختصات نسبی مکان سه ذره r12, ...
متن کاملتراکم بوز- انیشتن در پتانسیل نوسانگر هماهنگ
روی نمودار کسر چگالیده بر حسب دما تصحیحاتی انجام داده شده است. تعداد ذرات محدود و برهمکنش های دافعه، باعث کاهش چگالی کسر چگالیده می شود و این منجر به افزایش دمای بحرانی می شود. و برعکس، حد ترمودینامیکی و برهمکنش های جاذبه دمای بحرانی را کاهش می دهند. این تصحیحات، با لحاظ شرایط آزمایشگاهی که اغلب در پتانسیل نوسانگر ناهمسانگرد رخ می-دهند، باعث افزایش دمای بحرانی می شوند. با حذف شرط حد توما...
15 صفحه اولنظریه کوانتومی نوسانگر هماهنگ میرا
توصیف ماکروسکوپی نوسانگر هماهنگ میرا در محدوده مکانیک کوانتومی در سه بعد به کمک معادله لانژوین کوانتومی ارائه شده است. مشخص شده است که معادله لانژوین کوانتومی نمایش جایگزین توصیف ماکروسکوپی از یک ذره کوانتومی جفت شده با حمام گرمایی است. جفت شدگی با حمام گرمایی در معادله حرکت توسط دو جمله بیان می شود: تابع حافظه و عملگر نیروی تصادفی. ما فرمول بندی را در حالت هایی در حضور دو تابع حافظه و دو عملگر...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز - دانشکده علوم
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023