روش گام کسری برای حل معادلات دیفرانسیل جبری
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده علوم ریاضی
- نویسنده فریده قلیچی
- استاد راهنما مهدی قوتمند علی مس فروش
- سال انتشار 1394
چکیده
معادلات دیفرانسیل جبری (dae)کاربردهای فراوانی در علوم مختلف دارند که برای حل کردن آن ها از روش های مختلف استفاده می شود تا بتوان سریع تر به جواب رسید یکی از روش های ارایه شده روش گام کسری برای معادلات دیفرانسیل جبری است که در این پایان نامه به بررسی این روش می پردازیم. در فصل اول مفاهیم و تعاریف اولیه را بیان نموده و مروری گذرا برکاربردهای معادلات دیفرانسیل جبری خواهیم داشت. در فصل دوم ابتدا به ارایه روش حل معادلات دیفرانسیل جبری با اندیس 1 پرداخته و خطای آن ها را بررسی کرده سپس این روش را برای معادلات دیفرانسیل جبری با اندیس 2 نیز تعمیم می دهیم. در فصل سوم این روش را برای معادلات ناویه استوکس تراکم ناپذیر و تراکم پذیر بررسی می کنیم و الگوریتم این روش را برای این نوع معادلات ارایه می دهیم در فصل آخر ابتدا روش نیمه لاگرانژی را برای معادلات آب کم عمق بررسی می کنیم سپس نتیجه می گیریم که روش گام کسری ارایه شده در این پایان نامه، در زمان کوتاهتری ما را به جواب معادلات آب کم عمق می رساند.
منابع مشابه
بهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملبهینه سازی روش تجزیه آدومیان برای حل معادلات دیفرانسیل از مرتبه کسری
تاکنون روش تجزیه آدومیان بهطور گستردهای برای حل انواع معادلات دیفرانسیل بهکار گرفته شده است. اما در برخی موارد دیده شده است که این روش دقت کمتری نسبت به روشهای دیگر ازجمله روشهای هموتوپی دارد. از آنجایی که این روش، یک روش نسبتاً عمومی و قدرتمند برای یافتن جوابهای تحلیلی-تقریبی از انواع معادلات دیفرانسیل میباشد، در این مقاله سعی شده با بهکارگیری الگوی استاندارد این روش، یک روش بهینه جدید ...
متن کاملحل عددی معادلات دیفرانسیل معمولی کسری با روش گالرکین ناپیوسته موضعی
در این مقاله، روش گالرکین ناپیوستهی موضعی برای حل معادلات دیفرانسیل معمولی با مرتبهی کسری را در حالت کلی به کار میبریم. در این روش انتخاب (طبیعی) شار عددی آپویند، ما را قادر میسازد تا مسائل مقدار اولیه برای معادلات کسری معمولی را به صورت بازه به بازه و پیشرو در زمان حل کنیم. این بدین معنی است که ما بایستی در هر زیربازه به حل یک دستگاه معادلات از مرتبه پایین $(k+1)times (k+1)$...
متن کاملحل معادلات دیفرانسیل جبری کسری با روش های نیمه تحلیلی
در سال های اخیر یافتن روش های مناسب نیمه تحلیلی برای حل معادلات دیفرانسیل-جبری موضوع مورد توجه بسیاری از محققین بوده است. در این طرح روش های مناسب نیمه تحلیلی برای حل معادلات دیفرانسیل-جبری کسری بررسی می شود که از جمله این روش ها می توان به روش تکرار تغییرپذیر، روش تجزیه آدومین و روش آنالیز هموتوپی اشاره کرد. با توجه به اینکه معادلات دیفرانسیل جبری کسری دارای جواب تحلیلی دقیقی نیست و حل ای...
روش بدون شبکه برای حل عددی معادلات دیفرانسیل از مرتبه کسری
در این مقاله یک تکنیک کلی شناخته شده با عنوان روش بدون شبکه برای حل معادلات دیفرانسیل از مرتبه کسری درنظرگرفته شده است.جواب دقیق را با کمک روش مبتنی بر هم محلی توابع پایه شعاعی مورد تقریب قرار میدهیم.این تکنیک نقش مهمی که ایفا می کند معادله دیفرانسیل کسری را به یک دستگاه معادلات تقلیل می دهد.نتایج عددی بیانگر دقت وتوانایی این روش است.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده علوم ریاضی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023