رخی روش های عددی برای حل مسایل معکوس سهموی غیرخطی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی
- نویسنده قدسیه جنتی
- استاد راهنما علی ذاکری
- سال انتشار 1393
چکیده
امروزه اهمیت مسایل معکوس که رده بسیار بزرگی از مسایل مهندسی و فیزیکی را شامل می شوند و در اکثر علوم و شاخه های مختلف تخصصی کاربرد دارند، بر کسی پوشیده نیست. در این رساله ابتدا به معرفی اجمالی مسایل بدوضع و معکوس پرداخته و مسایل سهموی و شرایط وجود و یکتایی جواب آن را مطرح می کنیم. سپس به ارایه سه روش حل عددی مختلف یعنی روش اختلال هموتوپی، یک روش تفاضلی و روش هسته بازتولید برای آن می پردازیم و به طور مختصر به تشریح نحوه به کار گیری این روش ها بر روی مسایل سهموی معکوس و همچنین معایب و مزیت های نسبی روش ها پرداخته و در مورد همگرایی و پایداری آن ها بحث می کنیم.
منابع مشابه
روشهای عددی برای حل مسائل معکوس سهموی
در این پایان نامه روش عددی برای حل مساله ی معکوس سهمی گون خطی و غیر خطی یک بعدی را بررسی می کنیم. تقریب گسسته این مساله بر پایه ی تفاضلات متناهی بنا شده است. این تکنیک ها برای مشخص کردن پارامتر کنترل که در هر زمان دلخواه درجه حرارت مطلوب را در نقطه ی داده شده، در یک بازه ی زمانی معین مشخص می کند. جواب عددی ابتدا برای مساله معکوس خطی با استفاده از تفاضلات متناهی بدست می آوریم، سپس یک مسئله معکوس...
15 صفحه اولحل برخی مسائل معکوس سهموی به روش تجزیه آدومیان
در این مقاله سه نوع از مسائل معکوس سهموی از نوع هدایت گرمایی و تشعشع گرمایی به روش تجزیه آدومیان بررسی می شود و برای حل این نوع مسائل معکوس از یک شرط فوق ¬اضافی در یک نقطه داخلی ناحیه مفروض مسأله استفاده می شود. این روش با سرعت همگرایی بالا، تقریب عددی از جواب دقیق مسأله بدون نیاز به خطی¬سازی یا گسسته سازی می¬دهد. در واقع روش تجزیه آدومیان، نیاز به حل کردن هر سیستم خطی یا غیرخطی از معادلات جبری...
متن کاملمقایسۀ دو روش برای حل یک مسئلۀ معکوس سهموی با پارامتر کنترلی
در این مقاله با ارائۀ دو روش به حل عددی یک مسئلۀ معکوس سهموی با پارامتر کنترلی می پردازیم. در روش اول ابتدا به کمک تبدیلات معکوس پذیر، مسئلۀ سهموی مورد نظر را استاندارد کرده و سپس به وسیلۀ روش تفاضلات متناهی ضمنی به حل مسئلۀ استاندارد حاصل اقدام می کنیم. در روش دوم با به کارگیری شرط کرانه ای فوق اضافی انتگرالی، پارامتر کنترلی را از مسئله حذف کرده و در نهایت مسئلۀ تبدیل یافته را حل می کنیم. در پ...
متن کاملتقریب های تفاضلات متناهی برای حل عددی مسائل معکوس سهموی
هدف این پژوهش، به دست آوردن طرح های تفاضلات متناهی با مرتبه دقت بالا برای معادله دیفرانسیل جزئی معکوس سهموی است. با حل کردن چنین معادله ای پارامتر کنترل مجهول را به دست می آوریم. به همین منظور طرح های تفاضلات متناهی صریح، ضمنی، کرانک-نیکلسون و کراندال را در نظر گرفته و مرتبه دقت و ناحیه پایداری آن ها را مورد بررسی قرار می دهیم. در ادامه با استفاده از تابع تبدیل معادله دیفرانسیل جزئی را تغییر دا...
15 صفحه اولروش لاینز برای حل مسائل معکوس سهموی
مسائل هدایت گرمایی معکوس یک نمونه بارز از مسائلی هستند که هم زمان چندین تابع و پارامتر مجهول را تقریب می زنند، منابع گرمایی ساکن و متحرک، شرایط اولیه، شرایط کرانه ای، ... از آن جمله هستند. روش ارائه شده در این پایان نامه منحصراً برای تخمین شرایط کرانه ای ناشناخته می باشد. مفاهیم اساسی معادلات با مشتقات جزیی و مسائل هدایت گرمایی مستقیم که در فصل های اول و پنجم به آن ها اشاره کرده ایم، شامل...
15 صفحه اولروش¬های عددی برای حل مسایل دیفرانسیل جزیی تأخیری از نوع سهموی
در این پایان¬نامه، ابتدا به بیان صورت کلی دستگاه معادلات دیفرانسیل معمولی پرداخته (ر.ک. [1و2] ) و شرایط وجود و یکتایی جواب برای آنها را بیان می¬کنیم. سپس انواع معادلات دیفرانسیل تأخیری معرفی شده ( ر.ک. [3] ) و برخی روش¬های عددی حل آنها از قبیل روش¬های تک گامی رونگه – کوتا و روش¬های چندگامی مورد بررسی قرار می¬گیرد. پس از آن معادلات دیفرانسیل جزیی غیرخطی تأخیری از نوع سهموی (ر.ک. [6] ) ارائه می¬گ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023