روش انتگرال گیری متناهی برای حل معادلات دیفرانسیل با مشتقات جزئی

پایان نامه
چکیده

در روش انتگرال گیری متناهی مورد بحث در این پایان نامه برای حل معادلات دیفرانسیل با مشتقات جزئی‏، ماتریس های انتگرال گیری متناهی از مرتبه اول به ترتیب با استفاده از هر دو الگوریتم تقریب خطی معمولی و درونیابی با کمک توابع پایه شعاعی ساخته می شوند. این ماتریس ها می توانند برای بدست آوردن ماتریس های انتگرال گیری مراتب بالاتر استفاده شوند. همچنین روش فوق با ترکیب تکنیک لاپلاس‏، برای حل معادلات دیفرانسیل وابسته به زمان توسعه می یابد. تفاوت دقت هر دو روش انتگرال متناهی و تفاضلات متناهی نیز با چندین مثال بررسی می شود که مشاهده می شود روش انتگرال گیری متناهی با استفاده از توابع پایه شعاعی یا تقریب خطی معمولی‏، دقت بهتری نسبت به روش تفاضلات متناهی دارد

منابع مشابه

تعدیل وردشی شبکه در حل معادلات دیفرانسیل با مشتقات جزئی دو بعدی

در روش وردشی برای تعدیل شبکه، شبکه تعدیل پذیر به عنوان نگاره یک شبکه ثابت یکنواخت روی یک دامنه محاسباتی تحت تبدیل مخنصات مناسب بنا می شود. این تبدیل می نیمم کننده یک تابعک معین می باشد که میزان خطا را در نتایج عددی اندازه می گیرد. در این راستا یک تابع نشانگر تجویز می شود تا تعدیل شبکه را کنترل کند. در این مقاله یک تابعک تولید و تعدیل شبکه که تعریف آن بر نگاشت های همساز روی خمینه ها استوار است، ...

متن کامل

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

متن کامل

بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری

عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...

متن کامل

روش انتگرال اول برای حل دسته ای از معادلات دیفرانسیل با مشتقات جزئی غیرخطی مختلط

در سال های اخیر، تحقیق کردن درباره جواب های دقیق معادلات دیفرانسیل با مشتقات جزئی غیرخطی نقش مهمی در پدیده های غیرخطی بازی کرده است. پدیده های غیرخطی در طیف گسترده ای از علوم نظیر فیزیک پلاسما، فیزیک حالت جامد، دینامیک سیالات و ... ظاهر می شوند. برای این منظور، ریاضی دانان و فیزیک دانان برای پیدا کردن جواب های دقیق آنها تلاش های زیادی انجام می دهند‎. چندین روش قدرتمند و خوب برای به دست آوردن...

15 صفحه اول

بررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری

عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023