نگاشت های تقریبا ضربی حافظ طیف روی جبرهای باناخ

پایان نامه
چکیده

در این پایان نامه مفهوم تقریبا ضربی بودن نگاشت و پیوستگی خودکار درحالتی که تقریبا ضربی است را بررسی می کنیم. همچنین چند نسخه تقریبی از قضیه ی گلیسون -کاهان -زلازکو و نگاشت های تقریبا ضربی که نزدیک ضربی هستند را بیان و مطالعه می کنیم. همچنین به بررسی جبرهایی می پردازیم که دارای این ویژگی هستند که $amnm$-جبر‎‎ نامیده می شوند.‏در این پایان نامه ‏بعضی از ویژگی های شبه طیف‏،$amnm$-جفت‎‎‏، طیف شرطی‏، قدرمطلق پوشایی‏، فضای جداکننده‏، پالایه‎‏، فراپالایه‏، و نوع آزاد آن‏، تناظر یک به یک بین فراپالایه های آزاد و اندازه های جمعی متناهی مورد مطالعه قرار می گیرد. مفاهیم فراتوان و فراحاصلضرب را مورد بررسی قرار می دهیم و تعدادی از نتایج مربوط به آن را مطالعه می کنیم. در پایان شمول هایی طیفی و نگاشت های حافظ طیف را بررسی می کنیم که تحت چه شرایطی این نگاشت ها پیوسته هستند.

منابع مشابه

تابعک های تقریبا ضربی روی جبرهای باناخ

بعد از صحبت از تابعک های ضربی روی جبرهای باناخ، تابعک های تقریبا ضربی بیان می شود. جبرهای باناخی که تابعک های تقریبا ضربی نزدیک تابعک های ضربی هستند جبرهای amnm نامیده می شوند. در این پایان نامه چند قضیه در رابطه با تابعک های تقریبا ضربی بیان می شود، قضیه ای مهم که شرط های معادل با خاصیت amnm را بیان می کند ارائه می دهیم، سپس به معرفی جبرهای amnm می پردازیم. مانند فضای توابع پیوسته روی فضای هاس...

15 صفحه اول

نگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی

در این پایان نامه ثابت شده که یک نگاشت خطی حافظ طیف دو سویی روی دو جبر باناخ ماتریسی، یک همریختی جردن است.

نگاشت های خطی حافظ طیف دوسویی روی جبرهای باناخ ماتریسی

ر این پایان نامه‏، پاسخی مثبت به حالت خاصی از مسئله‎‎‎‎ آیوپتیت خواهیم داد که خود ریشه در مسئله کاپلانسکی دارد و به صورت زیر مطرح شده است:‎ ‎“‎آیا یک نگاشت خطی حافظ طیف دوسویی بین دو جبر باناخ نیم ساده یکدار لزوما یک همریختی جردن است؟‎” پاسخی مثبت به این سوال را، در قالبی به دست می آوریم که یکی از این دو جبرباناخ، دلخواه است و دیگری شامل مجموعه ای از ماتریس های 2×2 است

نگاشتهای پوشای ضربی حافظ طیف بین جبرهای باناخ جابه جایی

فرض می کنیم t نگاشتی پوشا از جبر باناخ و جابه جایی نیم ساده واحددار a به روی جبر باناخ جابهجایی واحددار b باشد، که عضو واحد را حفظ می کند و برای هر ?(t(f)t(g))??(fg),g.f?a. در این صورت b نیم ساده است و tیکریختی است. شرط پوشایی t لازم است. به عنوان مثال نگاشتی غیرخطی و غیر ضربی t را از c*-جبر جابه جایی به توی خودش وجود دارد که عضو واحد را حفظ می کند و برای هر f و g در دامنه تعریفش، ?(tftg)=?(fg)...

15 صفحه اول

تابعکهای تقریبا ضربی روی جبرهای باناخ تعویض پذیر

چکیده فرض کنید aیک جبرباناخ مختلط تعویض پذیرباعنصرهمانی 1باشدو?>0 . تابعک خطی ?:a?¢ راتقریبا –?ضربی گوییم اگر |?(ab)-?(a)?(b) |???a??b? ;a,b?a . دراین پایان نامه برای هرعضوa، طیفی رامعرفی می کنیم وبه ارتباط بین این طیف وتابعکهای تقریبا ضربی می پردازیم. این پایان نامه شامل 3فصل می باشد.درفصل اول مفاهیم ومقدماتی که درفصلهای بعد مورد استفاده قرارمی گیردراارائه خواهیم داد.درفصل دوم خواص طیف شر...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده ریاضی

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023