بهبود روش های توصیف بافت تصویر با استفاده از نمونه برداری فشرده و کاربرد آن در طبقه بندی تصاویر
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده برق و کامپیوتر
- نویسنده علیرضا ابوالقاسمی
- استاد راهنما محمدتقی صادقی وحید ابوطالبی
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1393
چکیده
در سامانه های بینایی ماشین جهت استخراج ویژ گی های تصویری عموماً از سه محتوای رنگ، بافت و شکل استفاده می شود. در این پایان نامه، ویژگی بافت تصویر مورد توجه قرار گرفته و از آن، برای افزایش کارایی و دقت طبقه بندی داده های تصویری استفاده شده است. روش های استخراج ویژگی بافت، به چهار دسته عمده ی آماری، ساختاری، مبتنی بر مدل و مبتنی بر تبدیل های تصویری تقسیم می شود. اخیراً روش های مبتنی بر نمایش تنک سیگنال، از مباحث تئوری بهینه سازی نرم صفر نیز به حوزه بینایی ماشین وارد شده است. استفاده از نمایش تنک سیگنال در مسائل طبقه بندی نتایج موفقیت آمیزی به همراه داشته است. اما در مواردی که داده های هر طبقه تنوع زیادی داشته ویا ابعاد داده ها در مقایسه با تعداد داده های آموزشی زیاد باشد، کیفیت عملکرد آن کاهش می یابد. بنابراین استخراج مناسب ویژگی ها در چنین چارچوبی اهمیت زیادی دارد. در این پژوهش، برای طبقه بندی دادگان بافت، ابتدا ویژگی های متنوع و کارآمدی از جمله الگوی باینری محلی، الگوی باینری گابور، تبدیل فوریه پاسخ فیلترگابور و ماتریس هم رخداد استخراج می گردد. سپس با درنظرگرفتن هر ویژگی به صورت مجزا، با بکارگیری طبقه بند پیشنهادی مبتنی بر نمایش تنک داده ها طبقه بندی می شود. طبقه بند پیشنهاد شده را می توان نوعی طبقه بند مبتنی بر نمایش تنک دانست که قاعده تصمیم گیری آن ترکیب ایده های مطرح در جمع ضرایب نمایش تنک و طبقه بند k نزدیک ترین همسایه است. جهت ارزیابی عملکرد روش پیشنهادی از سه پایگاه داده معروف بافت brodatz، curet وkylberg استفاده شده است. مقایسه نتایج حاصل از شبیه سازی، بیانگر عملکرد بهتر روش پیشنهادی نسبت به روش های مطرح قبلی است.
منابع مشابه
طبقه بندی تصاویر فراطیفی با استفاده از مدل آمیخته ی گاوسی و الگوریتم نمونه گیر گیبز
با پیشرفتهای فناوری سنجش از دور و تولید دادههای فراطیفی با اطلاعات طیفی فراوان، استفاده از این دادهها جهت مطالعه دقیق پدیدهها به سرعت در حال گسترش است. تصاویر فراطیفی به دلیل نمایش گسترده خصوصیات طیفی عوارض و پدیدههای سطح زمین در بسیاری از علوم زمین مورد توجه قرار گرفتهاند. یکی از مهمترین کاربردهای تصاویر فراطیفی، طبقهبندی آنها و تولید نقشههای پوشش زمینی بدون نیاز به دادههای واقعیت زم...
متن کاملمقایسه روش های آنالیز بافت تصویر به منظور شناسایی و طبقه بندی خودکار خرابیهای روسازی آسفالتی
ارزیابی عملکرد روسازی یکی از مهمترین عناصر سیستمهای مدیریت روسازی جهت تعیین راهکار بهینه عملیات ترمیم و نگهداری راه محسوب میشود. پیمایش خرابیهای سطحی راه جزو مراحل اصلی فرایند ارزیابی روسازی در سطح شبکه و همچنین در سطح پروژه است. در دو دهه اخیر، تحقیقات گستردهای پیرامون توسعه روشهای خودکار، جهت شناسائی خرابیهای روسازی انجام گرفته که اغلب بر پایه بینایی ماشین و فنون پردازش تصویر میباشند....
متن کاملبررسی بهبود دقت طبقه بندی با استفاده از ادغام تصویر تک باند ali با تصاویر ابرطیفی hyperion
بیشتر الگوریتم های طبقه بندی داده های سنجش از دور براساس ویژگی ها و اطلاعات طیفی پیکسل ها عمل میکنند. این مسئله باعث نادیده گرفتن اطلاعات مکانی سودمند و قابل استخراج بسیاری، مانند بافت تصاویر میشود. محیط شهری بافت ناهمگنی دارد که شناسایی انواع کاربری ها را به فرایندی دشوار و پیچیده تبدیل کرده است. در این پژوهش تأثیر استفاده از بافت تصویر تکباند سنجندۀ ali (advanced land imager) بر دقت طبقه ب...
متن کاملطبقه بندی تراکم توده های جنگلی با استفاده از تصویر ماهوارۀ IRS و الگوریتم ناپارامتریک kNN
برآوردهای کمّی و دقیق از مشخصههای تودههای جنگلی لازمه مدیریت صحیح آنها است. تصاویر سنجش از دور با توجه به اطلاعات مکانی دقیق و وسیع، همواره ابزاری مقرون به صرفه در مدیریت جنگل است و یکی از متداولترین کاربردهای تصاویر در علم جنگلداری، طبقهبندی مشخصههای تودههای جنگلی و تهیۀ نقشههای موضوعی آنها است. هدف این پژوهش بهینهسازی طبقهبندی تراکم (تعداد درختان در هکتار) در تودههای جنگلی با استفاده...
متن کاملطبقه بندی سنگ های آهکی براساس خصوصیات سنگشناسی و ترکیب شیمیایی با استفاده از روش پردازش تصویر و شناخت الگو
رویکرد پردازش تصویر، یکی از ابزارهای کاربردی در مقوله طبقهبندی و تشخیص دیجیتال نوع سنگشناسی است. در این مقاله، تفکیک نمونههای سنگ آهک از نظر میزان خلوص کربنات کلسیم، با استفاده از کمّیسازی ویژگیهای تصویری نمونهها و الگوریتم آماری بیزین، مطالعه شده است. بدین منظور تعداد 30 نمونه سنگ آهک از معدنی در منطقه لاج سمنان برداشت شد. هریک از این نمونهها توسط سنگشکن فکی خرد و بخشهایی از ن...
متن کاملطبقه بندی زعفران با استفاده از ویژگی های رنگی استخراج شده از تصویر
طبقهبندی زعفران به عنوان گرانترین ادویه از اهمیت بالایی برای مشتریان و تجار برخوردار است. به طور کلی، در حال حاضر دو روش برای درجهبندی زعفران استفاده میشود. روش اول براساس تجربیات فرد خبره و با مشاهده نمونهها انجام میشود. روش دوم تخریبی بوده و با استفاده از متدهای آزمایشگاهی انجام میگیرد. طبق نظر متخصصان، استفاده از تکنیکهای یادگیری ماشین برای طبقهبندی زعفران به دلیل داشتن ماهیت غیر مخ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده برق و کامپیوتر
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023