زیر مدول های قویاً اول و g-زیر مدول ها
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی
- نویسنده شهین برهمند
- استاد راهنما رضا نقی پور کمال عزیزی هریس
- سال انتشار 1393
چکیده
فرض کنیم r یک حلقه ی جابجایی و یکدار باشد. در این پایان نامه برای هر r-مدول m، زیر مدول قویاًاول تعریف و نشان داده می شود که زیر مدول های قویاً اول، بیشتر خواص اصلی زیر مدول های اول را دارا می باشند. به ویژه تعمیم قضیه ی ایده آل اصلی کرول به مدول ها توسعه داده می شود.
منابع مشابه
زیر مدول های اول
در این پایان نامه همه ی حلقه ها جابجایی و یکدار و همه ی مدول ها، یکانی می باشند. در فصل اول، به بررسی مفاهیم و قضایای مقدماتی که در فصل های بعد مورد نیاز هستند، می پردازیم. در فصل دوم، بعضی از خواص زیرمدول های اول مجزا شده از مدول ها را می یابیم و قضایایی در مورد بعد مدول ها ثابت می-کنیم. فصل سوم، به بررسی مدول ها و حلقه هایی می پردازد که در فرمول رادیکال صدق می کنند. در فصل چهارم، ب...
15 صفحه اولزیر مدول های اول از مدول های نوتری
زیر مدولهای اول -r مدول چپ m ارتباط نزدیکی با ایده آلهای اول حلقه r دارند. اگر n یک زیر مدول اول از m باشد آنگاه pa n n m/n یک ایده آل دو طرفه از r است . یک رده خاص از زیر مدولهای اول m را، زیر مدولهای قویا اول از m در نظر می گیریم و نشان می دهیم که اگر r در شرط زنجیر صعودی (به ترتیب در شرط زنجیر نزولی) روی ایده آلهای اول صدق کند و m یک -r مدول چپ متناهیا تولید شده باشد آنگاه m در شرط زنجیر صعو...
15 صفحه اولرادیکال زیر مدول ها و ایده آل های اول وابسته
در این پایان نامه به دنبال تجزیه ای از رادیکال یک زیر مدول مانندnاز –rمدول m، به صورت اشتراک زیر مدول های اول شناخته شده از mهستیم . برای رسیدن به این مطلب زیر مدول های اول، زیردمدول های اولیه، رادیکال زیر مدول ، ایده آل های اول وابسته، ایده آل های اول وابسته تعمیم یافته ، اول های مینیمال و بستار زیر مدول را تعریف میکنیم. در فصل دوم نشان میدهیم در صورتی که حلقه نوتری وm یک –rمدول مولد متناهی با...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023